621.822.2, 519.63 Numerical study of the influence of lubricant viscosity grade on thrust bearing operation

Sokolov N. V. (HMS Compressors Business Unit (HMS Group)/Казанский национальный исследовательский технологический университет), Khadiev M. B. (Казанский национальный исследовательский технологический университет), Fedotov P. E. (Kazan (Volga region) Federal University,/LLC «AST Volga region»), Fedotov E. M. (LLC «AST Volga region»)

THRUST BEARING, MATHEMATICAL MODEL, LUBRICATING FILM, FIXED PAD, NUMERICAL METHOD, BOUNDARY VALUE PROBLEM, VISCOSITY GRADE, CIRCUMFERENTIAL SPEED, CLEARANCE HEIGHT


doi: 10.18698/2309-3684-2023-1-92111


The study of the influence of the viscosity grade of the supplied oil ISO VG32 and ISO VG46 in a wide range of rotor speeds and operating clearances on the local and integral characteristics of a thrust plain bearing with fixed pads of the compressor is presented. The studies were carried out using the Sm2Px3Txτ calculation program based on the results of numerical experiments of the bearing. The program is built by numerical implementation of a nonstationary periodic thermoelastohydrodynamic (PTEHD) mathematical model of the thrust bearing operation. The research results indicate a significant influence of the oil viscosity grade on the main characteristics and temperature conditions of the thrust bearing. When changing from ISO VG46 to the lighter oil ISO VG32, there is a noticeable reduction in bearing pad temperatures and power loss. However, the level of this change is determined by the specified operating clearance between the rotating thrust collar and the bearing pads. The influence of oil viscosity grade and the profile of the working surface on the temperature regime of the pad is analyzed. The value and location of the maximum temperature of the thrust bearing pad is determined, as well as the possibility of applying the standard point 75/75 from API-670 in practice.


Maksimov V.A., Batkis G.S. Tribologiya podshipnikov i uplotnenij zhidkostnogo treniya vysokoskorostnyh turbomashin [Tribology of bearings and seals of liquid friction of high-speed turbomachines]. Kazan, Feng Publ., 1998, 428 p.
Khadiev M.B., Khamidullin I.V. Kompressory v tekhnologicheskih processah. Raschet podshipnikov skol'zheniya centrobezhnyh i vintovyh kompressorov: monografiya [Compressors in technological processes. Calculation of sliding bearings of centrifugal and screw compressors: monograph]. Kazan, KNITU Publ., 2021, 260 p.
Klamann D. Lubricants and related products: synthesis, properties, applications, international standards. Verlag Chemie, 1984, 489 p.
Toder I.A., Roller G.M. Raschet predel'nyh rezhimov raboty podshipnika zhidkostnogo treniya [Calculation of the limiting modes of operation of a liquid friction bearing]. Razvitie gidrodinamicheskoj teorii smazki [Development of the hydrodynamic theory of lubrication], 1970, pp. 68–88.
Glavatskih S.B., DeCamillo S. Influence of oil viscosity grade on thrust pad bearing operation. Proceedings of the Institution of Mechanical Engineers, Part J: Journal of Engineering Tribology, 2004, vol. 218, iss. 5, pp. 401–412.
Brockwell K., Dmochowski W., Decamillo S.M. An investigation of the steady-state performance of a pivoted shoe journal bearing with ISO VG 32 and VG 68 oils. Tribology Transactions, 2004, vol. 47, pp. 480–488.
Certificate no. 2020663790 The Sm2Px3Txτ program is a dynamically loaded thrust sliding bearing when setting a direct task [Programma Sm2Px3Txτ Dinamicheski nagruzhennyj upornyj podshipnik skol'zhe-niya pri postanovke pryamoj zadachi] / P.E.Fedotov, E.M. Fedotov, N.V. Sokolov, M.B. Khadiev; applicant and copyright holder: P.E.Fedotov, E.M. Fedotov, N.V. Sokolov, M.B. Khadiev — no. 2020612244; application 02.03.2020; registered in the register of computer programs 19.05.2020 — [1].
Maksimov V.A. Khadiev M.B., Fedotov E.M. Opredelenie gidrodinamicheskih i teplovyh harakteristik upornyh podshipnikov matematicheskim modelirovaniem [Determination of hydrodynamic and thermal characteristics of thrust bearings by mathematical modeling]. Vestnik mashinostroeniya [Bulletin of Mechanical Engineering], 2004, no. 6, pp. 39–45.
Podolsky M.E. Upornye podshipniki skol'zheniya: teoriya i raschet [Thrust sliding bearings: theory and calculation]. Leningrad, Mashinostroenie Publ., 1981, 261 p.
Sokolov N.V., Khadiev M.B., Maksimov M.B., Fedotov E.M., Fedotov P.E. Mathematical modeling of dynamic processes of lubricating layers thrust bearing turbo-chargers. Journal of Physics: Conference Series, 2019, vol. 1158, art. no. 04219.
Sokolov N.V., Khadiev M.B., Fedotov P.E., Fedotov E.M. Three-dimensional periodic thermoelastichydrodynamic modeling of hydrodynamic processes of a thrust bearing. VESTNIK of Samara University. Aerospace and Mechanical Engineering, 2021, vol. 20, no. 3, pp. 138–151.
Dowson D.C. A generalized Reynolds equation for fluid-film lubrication. International Journal of Mechanical Sciences, 1962, vol. 4, pp. 159–170.
He M., Byrne J.M., Cloud C.H., Vázquez J.A. Steady state performance prediction of directly lubricated fluid film journal bearings. Proceedings of the 41st Turbomachinery Symposium, 2012. DOI: 10.21423/R1PM0P
Fedotov E.M. Limit Galerkin-Petrov schemes for a nonlinear convection- diffusion equation. Differential Equations, 2010, vol. 46, no. 7, pp. 1042–1052.
Elwell R.C. Thrust bearing temperature/Part 1. Machine Design, 1971, June 24, pp. 79–81.
Elwell R.C. Thrust bearing temperature/Part 2. Machine Design, 1971, July 8, pp. 91–94


Соколов Н.В., Хадиев М.Б., Федотов П.Е., Федотов Е.М. Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения. Математическое моделирование и численные методы, 2023, No 1, с. 92–111.


Работа выполнена за счет средств Программы стратегического академического лидерства Казанского (Приволжского) федерального университета («ПРИОРИТЕТ-2030»).


Download article

Количество скачиваний: 64