Рубрика: "01.02.00 Механика"



539.3 Коротковолновые асимптотики дисперсионных соотношений в случае симметричной трехслойной пластины

Лашаб М. И. (Университет Аласмария), Роджерсон Г. Э. (Кильский университет), Сэндифорд К. Д. (Солфордский университет)


doi: 10.18698/2309-3684-2015-1-5066


В статье рассмотрены дисперсионные волновые процессы в симметричной трехслойной пластине. Каждый из слоев пластины предполагается упругим и изотропным. Приведен численный и асимптотический анализ дисперсионного соотношения. Построенные численные решения дисперсионного соотношения анализируются в коротковолновой области, с выводом соответствующих асимптотик. Полученные приближенные решения сравниваются с точными решениями, демонстрируя весьма широкую область применимости, значительно превосходящую ожидаемую. Полученные асимптотические решения могут найти применение в оценках погрешности при вычислении интегралов по волновому числу, в связи с чем представляется возможным развитие соответствующих гибридных численно-асимптотических методов для нестационарных волновых полей, возникающих при ударных воздействиях.


Лашаб М. И., Роджерсон Г. Э., Сэндифорд К. Д. Коротковолновые асимптотики дисперсионных соотношений в случае симметричной трехслойной пластины. Математическое моделирование и численные методы, 2015, №1 (5), c. 50-66



539.3 Математическое моделирование процесса взрывного нагружения менисковой облицовки

Асмоловский Н. А. (МГТУ им.Н.Э.Баумана), Баскаков В. Д. (МГТУ им.Н.Э.Баумана), Боярская Р. В. (МГТУ им.Н.Э.Баумана), Зарубина О. В. (МГТУ им.Н.Э.Баумана), Тарасов В. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-5267


Рассмотрена задача математического моделирования процесса формирования высокоскоростного элемента из менисковой облицовки методом конечных элементов с учетом погрешностей геометрии взрывного устройства. Приведена подробная расчетная схема процесса. Представлен обзор математической модели и численных алгоритмов. Проведена оценка влияния типа конечного элемента на конфигурацию формируемого высокоскоростного элемента. Практическое применение предлагаемого подхода показано на примере анализа влияния неравномерности толщины и несоосности сферических поверхностей менисковой облицовки на кинематические и геометрические параметры формируемого высокоскоростного элемента


Асмоловский Н. А., Баскаков В. Д., Боярская Р. В., Зарубина О. В., Тарасов В. А. Математическое моделирование процесса взрывного нагружения менисковой облицовки. Математическое моделирование и численные методы, 2016, №1 (9), c. 52-67



539.3 Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Федонюк Н. Н. (ФГУП «Крыловский государственный научный центр»)


doi: 10.18698/2309-3684-2016-3-323


Разработана многоуровневая модель для многомасштабного деформирования трехслойных (сэндвичевых) конструкций из полимерных композиционных материалов типа пластин с заполнителем на основе пенопласта, учитывающая микромеханические процессы деформирования и повреждаемости матрицы, армирующего наполнителя и пенопласта, а также макроскопические дефекты типа непропитки композитных обшивок. Проведено конечно-элементное моделирование напряженно-деформированного состояния, повреждаемости и разрушения трехслойных пластин с обшивками из гибридных композитов из углепластика, с различными размерами дефекта типа непропитки, при изгибе равномерным давлением. Установлены особенности процесса деформирования и повреждаемости данного типа композитных конструкций. Разработанная методика может быть применена для расчета деформирования, повреждаемости и разрушения трехслойных пластин из полимерных композиционных материалов, применяемых в различных отраслях промышленности: судостроении, авиастроении, ракетостроении.


Димитриенко Ю. И., Юрин Ю. В., Федонюк Н. Н. Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами. Математическое моделирование и численные методы, 2016, №3 (11), c. 3-23



551.5:517 Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля

Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2014-2-115126


В течение последних десятилетий наблюдаются изменения климата, выражающиеся в его глобальном потеплении. Эти изменения в основном связывают с антропогенным увеличением количества парниковых газов в атмосфере (главный из них — СО2). В статье рассматривается проблема и возможность стабилизации климата на современном уровне. Исследование ведется на основе сезонной глобальной совместной трехмерной гидродинамической модели климата, включающей модель Мирового океана с реальными глубинами и конфигурацией материков,
модель эволюции морского льда и энерго-влагобалансовую модель атмосферы. На первом этапе проведены расчеты прогнозирования климата до 2100 г. с использованием сценария роста СО2 А2, предложенного IPCC. Они дают увеличение среднегодовой поверхностной температуры атмосферы на 3,5 С. Проведены серии расчетов для оценки возможности стабилизации климата на уровне 2010 г. путем управления выбросами в стратосферу сульфатного аэрозоля, отражающего и рассеивающего часть приходящего солнечного излучения. Вычислены концентрации (альбедо) аэрозоля с 2010 до 2100 г., позволяющие стабилизировать среднегодовую температуру поверхностного слоя атмосферы. Показано, что таким путем невозможно добиться приближения климата к существующему, хотя можно значительно ослабить парниковый эффект. При условии однородного по пространству распределения аэрозоля в стратосфере можно стабилизировать среднюю глобальную температуру атмосферы, но при этом в низких и средних иротах климат будет холоднее на 0,1…0,2 С, а в высоких широтах — теплее на 0,2…1,2 С. Кроме того, эти различия имеют сильно выраженный сезонный ход — в зимний период они увеличиваются. Прекращение выбросов аэрозоля в 2080 г. приведет к быстрому увеличению средней глобальной температуры атмосферы, приближающейся в 2100 г. к значению температуры без аэрозоля.


Пархоменко В. П. Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля. Математическое моделирование и численные методы, 2014, №2 (2), c. 115-126



533.6.07 Сверхзвуковое течение в осесимметричном канале

Максимов Ф. А. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2015-1-109120


Разработанный метод расчета сверхзвукового течения внутри осесимметричного канала учитывает образование отраженных от стенок канала волн и их влияние на течение внутри канала. Благодаря этому удается прогнозировать не только аэродинамические свойства аэродинамической формы в зависимости от ее местоположения в канале, но и воздействие находящейся в этом канале аэродинамической формы на стенки такого канала.


Максимов Ф. А. Сверхзвуковое течение в осесимметричном канале. Математическое моделирование и численные методы, 2015, №1 (5), c. 109-120



62-752 Моделирование нагрузок на составные упругие оболочки методом начального приближения

Дубровин В. М. (МГТУ им.Н.Э.Баумана), Бутина Т. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-2-2838


Предложен метод расчета нагрузок (усилий, моментов) на составную оболочку, состоящую из внешней и внутренней оболочек, соединенных упругими связями, в случае когда внешняя оболочка находится под воздействием поперечной нагрузки (изгибающего момента, перерезывающих сил и распределенной инерционной нагрузки). В качестве примера использования метода исследовано влияние жесткостных характеристик внешней оболочки на нагружение внутренней оболочки.


Дубровин В.М., Бутина Т.А. Моделирование нагрузок на составные упругие оболочки методом начального приближения. Математическое моделирование и численные методы, 2017, No 2, с. 28–38.



531.36:521.1 Моделирование динамики космической станции в окрестности астероида

Родников А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-5568


Предлагается классификация задач динамики космической станции, совершающей полет в окрестности малой планеты, чье движение вокруг центра масс является регулярной прецессией. Классификация проводится по трем признакам: модели потенциала астероида, способа удерживания станции около малой планеты и решаемой динамической задачи. Приводится обзор результатов автора, полученных к настоящему времени при анализе сформулированных в рамках этой классификации задач. В частности, в случае, когда потенциал астероида моделируется композицией потенциалов двух точечных (действительных или комплексно сопряженных) масс, находящихся на действительном или мнимом расстоянии, строятся множества стационарных орбит свободной станции, а также положений равновесия станции на леере, т.е. тросе, концы которого закреплены в полюсах астероида. Проводится анализ устойчивости некоторых из найденных орбит и положений равновесия. Приводятся некоторые случаи интегрируемости уравнений движения космической станции вдоль леера


Родников А. В. Моделирование динамики космической станции в окрестности астероида. Математическое моделирование и численные методы, 2016, №2 (10), c. 55-68



517.9:539.3:519.6 Численное моделирование движения абсолютно гибкого стержня в потоке воздуха

Сорокин Ф. Д. (Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Низаметдинов Ф. Р. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-316


Предложен алгоритм расчета напряженно-деформированного состояния абсолютно гибких стержней, взаимодействующих с внешним потоком воздуха. Этот алгоритм основан на замене континуальной механической системы дискретным набором прямолинейных конечных элементов и сосредоточенных масс. Дифференциальные уравнения движения масс, записанные с учетом аэродинамических нагрузок и диссипативных сил, проинтегрированы численным методом, что позволило найти как положение равновесия гибкого стержня в потоке, так и критическую скорость потока, при превышении которой начинаются интенсивные вибрации стержня.


Сорокин Ф. Д., Низаметдинов Ф. Р. Численное моделирование движения абсолютно гибкого стержня в потоке воздуха. Математическое моделирование и численные методы, 2016, №1 (9), c. 3-16



539.3 Асимптотическая теория термоползучести многослойных тонких пластин

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-1836


Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.


Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36



<< 3 >>