Рубрика: "01.02.00 Механика"
doi: 10.18698/2309-3684-2016-3-2432
Предложен метод расчета динамической устойчивости цилиндрической оболочки при нагружении ее осевой сжимающей нагрузкой, изменяющейся во времени, и осевой циклической нагрузкой, которая изменяется по определенному закону. В качестве примера рассмотрены случаи осевой нагрузки, меняющейся по линейному закону, и циклической нагрузки, которая меняется по гармоническому закону. Для циклического нагружения приведена диаграмма Айнса — Стретта, определяющая области устойчивости и неустойчивости колебаний оболочки.
Дубровин В. М., Бутина Т. А. Моделирование динамической устойчивости цилиндрической оболочки при циклическом осевом воздействии. Математическое моделирование и численные методы, 2016, №3 (11), c. 24-32
536.2 Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости
doi: 10.18698/2309-3684-2015-4-5365
Многие используемые в технике теплозащитные материалы имеют пористую структуру. При интенсивном тепловом воздействии возникает необходимость учитывать перенос тепловой энергии путем излучения в порах таких материалов. Построена математическая модель, описывающая теплообмен излучением в шаровой полости, форму которой можно рассматривать как среднюю
статистическую по отношению к формам замкнутых пор в твердых телах. Для количественного анализа этой модели использован метод наименьших квадратов. Введен эквивалентный коэффициент теплопроводности условной сплошной среды, заполняющей пору, что позволяет рассматривать материал с пористой структурой как сплошное неоднородное твердое тело.
Зарубин В. С., Пугачев О. В., Савельева И. Ю. Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости. Математическое моделирование и численные методы, 2015, №4 (8), c. 53-65
doi: 10.18698/2309-3684-2015-2-2345
Рассмотрен класс перспективных анизогридных конструкций, представляющих сетчатые оболочки из углепластика. Приведен краткий анализ существующих подходов к моделированию сетчатых конструкций. Для достоверного описания сложного поведения анизогридных конструкций при воздействии различных нагру-зок предложены математическая и вычислительная модели. Высокая степень точности и устойчивости вычислительной модели, основанной на разложениях неизвестных функций по базису Фурье и базису, состоящему из полиномов Чебы-шева, обусловлена отсутствием насыщения таких методов приближения. Эф-фективность предложенных моделей и методов показана на примере решения тестовых краевых задач и задачи осевого сжатия анизогридной цилиндрической оболочки.
Голушко С. К., Семисалов Б. В. Численное моделирование деформирования анизогридных конструкций с применением высокоточных схем без насыщения. Математическое моделирование и численные методы, 2015, №2 (6), c. 23-45
doi: 10.18698/2309-3684-2014-1-5767
Рассмотрена плоская стационарная задача теории упругости о движении вертикальной сосредоточенной нагрузки вдоль поверхности упругого полупространства с тонким покрытием. В рамках длинноволновой асимптотической модели для волны Рэлея в случае упругого полупространства с покрытием исследуются режимы в приповерхностном слое при скоростях движения нагрузки, близких к резонансной скорости поверхностной волны. Получена классификация режимов в зависимости от соотношения скорости движения нагрузки и резонансной скорости, а также от знака линейного коэффициента дисперсии покрытия. Установлены режимы, в которых имеет место излучение от источника. Полученные результаты могут быть обобщены на случай более сложных физических свойств материала покрытия, включая эффекты анизотропии, вязкости и предварительной деформации.
Каплунов Ю. Д., Облакова Т. В., Приказчиков Д. А. Околорезонансные режимы подвижной нагрузки в плоской задаче теории упругости для полупространства с тонким покрытием. Математическое моделирование и численные методы, 2014, №1 (1), c. 57-67
517.9:539.3:519.6 Численное моделирование движения абсолютно гибкого стержня в потоке воздуха
doi: 10.18698/2309-3684-2016-1-316
Предложен алгоритм расчета напряженно-деформированного состояния абсолютно гибких стержней, взаимодействующих с внешним потоком воздуха. Этот алгоритм основан на замене континуальной механической системы дискретным набором прямолинейных конечных элементов и сосредоточенных масс. Дифференциальные уравнения движения масс, записанные с учетом аэродинамических нагрузок и диссипативных сил, проинтегрированы численным методом, что позволило найти как положение равновесия гибкого стержня в потоке, так и критическую скорость потока, при превышении которой начинаются интенсивные вибрации стержня.
Сорокин Ф. Д., Низаметдинов Ф. Р. Численное моделирование движения абсолютно гибкого стержня в потоке воздуха. Математическое моделирование и численные методы, 2016, №1 (9), c. 3-16
doi: 10.18698/2309-3684-2017-1-3254
Представлены результаты разработки модели деформирования несжимаемых слоистых композитов с конечными деформациями по характеристикам отдельных слоев. Предложен вариант метода асимптотического осреднения для слоистых нелинейно-упругих несжимаемых композитов с конечными деформациями и периодической структурой. Использовано универсальное представление определяющих соотношений для несжимаемых слоев композита, предложенное Ю.И. Димитриенко, позволяющее проводить моделирование одновременно для комплекса различных нелинейно-упругих моделей сред, отличающихся выбором пары энергетических тензоров. Доказано, что, если все слои композита являются несжимаемыми, то композит в целом также является несжимаемой, но анизотропной средой. Рассмотрена задача об одноосном растяжении слоистой пластины из несжимаемых слоев с конечными деформациями, с помощью разработанного метода рассчитаны эффективные диаграммы деформирования, связывающие компоненты осредненных тензоров напряжений Пиолы — Кирхгофа и градиента деформаций, а также распределение напряжений в слоях композита.
Разработанный метод расчета эффективных диаграмм деформирования и напряжений в слоях композита может быть использован при проектировании эластомерных композитов с заданными свойствами.
Димитриенко Ю. И., Губарева Е. А., Кольжанова Д. Ю., Каримов С. Б. Моделирование несжимаемых слоистых композитов с конечными деформациями на основе метода асимптотического осреднения. Математическое моделирование и численные методы, 2017, №1 (13), c. 32-54
doi: 10.18698/2309-3684-2014-2-115126
В течение последних десятилетий наблюдаются изменения климата, выражающиеся в его глобальном потеплении. Эти изменения в основном связывают с антропогенным увеличением количества парниковых газов в атмосфере (главный из них — СО2). В статье рассматривается проблема и возможность стабилизации климата на современном уровне. Исследование ведется на основе сезонной глобальной совместной трехмерной гидродинамической модели климата, включающей модель Мирового океана с реальными глубинами и конфигурацией материков,
модель эволюции морского льда и энерго-влагобалансовую модель атмосферы. На первом этапе проведены расчеты прогнозирования климата до 2100 г. с использованием сценария роста СО2 А2, предложенного IPCC. Они дают увеличение среднегодовой поверхностной температуры атмосферы на 3,5 С. Проведены серии расчетов для оценки возможности стабилизации климата на уровне 2010 г. путем управления выбросами в стратосферу сульфатного аэрозоля, отражающего и рассеивающего часть приходящего солнечного излучения. Вычислены концентрации (альбедо) аэрозоля с 2010 до 2100 г., позволяющие стабилизировать среднегодовую температуру поверхностного слоя атмосферы. Показано, что таким путем невозможно добиться приближения климата к существующему, хотя можно значительно ослабить парниковый эффект. При условии однородного по пространству распределения аэрозоля в стратосфере можно стабилизировать среднюю глобальную температуру атмосферы, но при этом в низких и средних иротах климат будет холоднее на 0,1…0,2 С, а в высоких широтах — теплее на 0,2…1,2 С. Кроме того, эти различия имеют сильно выраженный сезонный ход — в зимний период они увеличиваются. Прекращение выбросов аэрозоля в 2080 г. приведет к быстрому увеличению средней глобальной температуры атмосферы, приближающейся в 2100 г. к значению температуры без аэрозоля.
Пархоменко В. П. Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля. Математическое моделирование и численные методы, 2014, №2 (2), c. 115-126
533.6.011.5 Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах
doi: 10.18698/2309-3684-2016-3-3352
Разработана модификация метода Польгаузена, позволяющая быстро и эффективно получить распределение теплового потока по поверхности затупленных тел. Проведены расчеты, их результаты приведены в сравнении с численным решением задачи в рамках уравнений Навье — Стокса.
Котенев В. П., Булгаков В. Н., Ожгибисова Ю. С. Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах. Математическое моделирование и численные методы, 2016, №3 (11), c. 33-52
doi: 10.18698/2309-3684-2017-2-8193
Предложена аналитическая зависимость для расчета давления на поверхности затупленных конусов, обтекаемых сверхзвуковым потоком газа, с учетом разрыва кривизны образующей. Для определения свободных параметров зависимости применялись генетический алгоритм и каскадные методы оптимизации функционала метода наименьших квадратов. Полученные результаты даны в сравнении со строгим численным решением невязкой задачи. Сравнение показывает, что возможно использовать аналитическую формулу для распределения давления по поверхности в широком диапазоне чисел Маха при разных углах полураствора конуса. В отличие от известных работ предлагаемая зависимость позволяет учесть разрыв кривизны образующей в точке сопряжения сферы с конической поверхностью.
Булгаков В.Н., Котенев В.П., Сапожников Д.А. Моделирование сверхзвуково- го обтекания затупленных конусов с учетом разрыва кривизны образующей тела. Математическое моделирование и численные методы, 2017, No 2, с. 81–93.