539.3 Simulation of dynamic stability of a cylindrical shell under cyclic axial impact

Dubrovin V. M. (Bauman Moscow State Technical University), Butina T. A. (Bauman Moscow State Technical University)

CYLINDRICAL SHELL, DEFLECTION, EQUILIBRIUM POSITION, CHART, DYNAMIC FACTOR, STABLE REGION, UNSTABLE REGION, PARAMETRIC RESONANCE.


doi: 10.18698/2309-3684-2016-3-2432


In this article we suggest a method for calculating the dynamic stability of a cylindrical shell with its axial compressive time-varying load, and cyclic axial load, which varies according to a certain law. As an example, we consider the axial load, changing linearly and the cyclic load, which varies according to the harmonic law. To show the cyclic load, we use Ince — Strutt diagram, defining the stable and unstable regions of the shell fluctuations.


[1] Volmir A.S. Ustoichivost deformiruemykh system [Stability of deformable systems]. Moscow, Nauka Publ., 1967, 984 p.
[2] Dimitrienko Yu.I. Nelineynaya mehanika sploshnoy sredy [Nonlinear continuum mechanics]. Moscow, Fizmatlit Publ., 2009, 624 p.
[3] Rabotnov Yu.N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye trudy [The problems of solid mechanics. Selected works]. Moscow, Nauka Publ., 1991, 194 p.
[4] Zhilin P.A. Aktualnye problemy mekhaniki. [Problems in Mechanics]. St. Petersburg, Politechnic University Publ., 2006, 306 p.
[5] Vlasov V.Z. Izbrannye trudy. Obschaya teoriya obolochek. V 3 t. T. 1. Ocherk nauchnoi deyatelnosti [Selected works. The general theory of shells. In 3 vol. Vol. 1. Outline of research activities]. Moscow, AS USSR Publ., 1962, 528 p.
[6] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 t. T. 2. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy [Continuum Mechanics. In 4 vol. Vol. 2. Universal laws of continuum mechanics and electrodynamics]. Moscow, BMSTU Publ., 2011, 560 p.
[7] Belonosov S.M. Matematicheskoe modelirovanie ravnovesnykh sostoyaniy uprugikh tonkikh obolochek [Mathematical modeling of equilibrium states of thin elastic shells]. Moscow, Nauka Publ., 1993, 158 p.
[8] Zhilin P.A. Osnovy teorii obolochek [Fundamentals of the theory of shells]. St. Petersburg, Politechnic University Publ., 2006, 166 p.
[9] Dubrovin V.M., Butina T.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, no. 9 (21). DOI: 10.18698/2308-6033-2013-9-957
[10] Algazin O.D., Butina T.A., Dubrovin V.M. Vestnik MGTU im. N.E. Baumana, Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences, 2011, spec. iss. “Mathematical modeling”, pp. 70–72.
[11] Dubrovin V.M., Butina T.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 2 (6), pp. 46–57.
[12] Dubrovin V.M., Butina T.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2014, no. 6 (30). DOI: 10.18698/2308-6033-2014-6-1237
[13] Dubrovin V.M., Butina T.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2014, no. 4 (28). DOI: 10.18698/2308-6033-2014-4-1233
[14] Butina T.A., Dubrovin V.M. Vestnik MGTU im. N.E. Baumana, Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences, 2012, special iss., no. 3 “Mathematical modeling”, pp. 127–133.
[15] Bushuev A.Yu., Yakolev D.O. Vestnik MGTU im. N.E. Baumana, Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences, 2011, special iss. “Mathematical modeling”, pp. 66–69.
[16] Narasimhan K.Y., Hoff N.J. Trans. ASME, ser. E, 1971, no. 1, vol. 38, pp. 160–172.


Dubrovin V., Butina T. Simulation of dynamic stability of a cylindrical shell under cyclic axial impact. Маthematical Modeling and Coтputational Methods, 2016, №3 (11), pp. 24-32



Download article

Количество скачиваний: 619