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Предложен метод расчета динамической устойчивости цилиндрической оболочки 
при нагружении ее осевой сжимающей нагрузкой, изменяющейся во времени, и осе-
вой циклической нагрузкой, которая изменяется по определенному закону. В каче-
стве примера рассмотрены случаи осевой нагрузки, меняющейся по линейному за-
кону, и циклической нагрузки, которая меняется по гармоническому закону. Для 
циклического нагружения приведена диаграмма Айнса — Стретта, определяющая 
области устойчивости и неустойчивости колебаний оболочки. 
 
Ключевые слова: цилиндрическая оболочка, прогиб, равновесное положение, диа-
грамма, коэффициент динамичности, область устойчивости, область неустойчи-
вости, параметрический резонанс. 

 
Введение. Рассмотрим динамическую устойчивость цилиндричес-

кой оболочки, находящейся под действием либо осевой сжимающей 
нагрузки, изменяющейся во времени, либо осевой циклической нагруз-
ки, изменяющейся по определенному закону. Если при этом рассматри-
вать прогибы оболочки, сравнимые с ее толщиной, то задачу следует 
решать в нелинейной постановке. 

Сопоставляя прогибы оболочки при динамическом и статическом 
нагружении, можно оценить влияние динамики нагружения на устой-
чивость оболочки. В качестве такой оценки может служить коэффи- 
циент динамической нагрузки. 

Метод решения систем динамических уравнений устойчивости 
цилиндрической оболочки. В соответствии с общей теорией тонких 
оболочек исходные уравнения нелинейной теории для оценки динами-
ческой устойчивости цилиндрической оболочки имеют вид [1–10]: 

• для изотропной оболочки: 
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• для конструктивно ортотропной оболочки: 
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 w , 0w  — полный и начальный прогиб оболочки; 

δ  — толщина оболочки; Φ  — функция напряжений; 1γ  — удельный 
вес материала оболочки; q  — интенсивность действующей попереч-
ной нагрузки; R  — радиус оболочки. 

Уравнения (1) и (2) позволяют оценить устойчивость оболочки 
при динамическом нагружении, соответствующем различным расчет- 
ным случаям. 

На основании формул (1) и (2) получим уравнение, связывающее 
параметры прогиба с изменяющейся во времени нагрузкой [11–13]: 
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0f  — параметры, определяющие полный и начальный прогиб оболочки 

в виде ( )2sin sin sin ,= α β + ψ α + ϕw f x y x  (0 0 sin sin= α β +w f x y  

)2sin ;x+ ψ α + ϕ / ;α = π l  / ;β = n R  l  — длина оболочки; n  — число 

полуволн в окружном направлении; 2 ( / );η = δn R  m  — число полуволн 
в продольном направлении. 
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Исключим из уравнения (3) инерционный член и положим 0 0.ξ =  
Получим статическое решение для идеальной оболочки: 
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Тогда уравнение (3) можно представить в виде: 

( )

( ) ( ) ( )

( )
( )

( ) ( )

4
3 20

02

2 2
3 2 2

0* 2 22 20

4 2
2 2

0 02 2 22 2

1 1
16

1 1 1 0.
1 1

1 4 11
4 1 1

 
  ξ * ξ + ξ * ξ * η ξ * ξξ *  ξ  ξ
 

  ξ ξ η  **  + ξ * ξξ ψ + =  + ξ + ξ   
  

ξ ξ  + + ψ ξ * ξ ξ + ξ * ξ ψ  ξ + ξ + ξ    

b

bb

t
q

d
qs dt g

qq

(4) 

Уравнение (4) может быть проинтегрировано численным мето-
дом. После этого могут быть определены критические сжимающие 
усилия, соответствующие заданному воздействию, их сравнивают 
с критическими нагрузками при статическом нагружении [14].  

Устойчивость оболочки при действии осевой циклической 
нагрузки. Аналогично можно оценить динамику воздействия на не-
сущую способность оболочки в случае, когда осевая динамическая 
нагрузка имеет циклический характер. При этом следует учесть воз-
можность появления параметрического резонанса в конструкции. 
В случае если характеристики и параметры воздействия такие, что 
наступление параметрического резонанса возможно, конструкция 
будет находиться в неустойчивой зоне. Тогда задача динамической 
устойчивости заключается в определении прогибов оболочки в зави-
симости от числа циклов нагружения, так как на поведение оболочки 
влияет не только рассматриваемый цикл нагружения, но и все пред-
шествующие. Если же конструкция находится в устойчивой зоне, то 
влияние предшествующих циклов на поведение оболочки можно не 
учитывать, а влияние динамики нагружения на несущую способность 
оболочки оценивать как при одноразовом нагружении [15].  
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Для приближенной оценки областей устойчивости и неустойчи-
вости рассмотрим колебания идеальной ( )0 0ξ =  оболочки при задан-
ном воздействии, изменяющемся по гармоническому закону. Тогда 
уравнение (4) можно записать в виде: 
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               (5) 

Приняв приближенно 0 cos ,= θq q t  ,ψ = ξk  вместо уравнения (5) 
получим выражение: 
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Если исключить из уравнения (6) нелинейные члены, получим 
уравнение Матье — Хилла. Результаты исследований такого уравне-
ния показывают, что в зависимости от соотношения параметров µ  
и ω  система может находиться как в устойчивой, так и неустойчивой 
зоне. По результатам этих исследований можно построить области 
устойчивости и неустойчивости оболочки или диаграмму Айнса — 
Стретта [15].  

Для практически важных случаев параметр λ  находится в диапа-
зоне 1λ ≤ , что представлено на рисунке. 

Наличие областей устойчивости и неустойчивости означает, что 
рассмотрение параметрических колебаний в линейной постановке 
позволяет найти границы областей устойчивости и неустойчивости 
и описать поведение упругой оболочки в течение начального периода 
возбуждения параметрических колебаний. При этом если оболочка 
находится в устойчивой зоне, то влияние цикличности нагружения на 
несущую способность оболочки можно не учитывать. Если же обо-
лочка находится в неустойчивой области, то ее прогиб при парамет-
рических колебаниях возрастает по определенному закону в зависи-
мости от числа циклов нагружения. Для того чтобы установить этот 
закон, необходимо рассматривать нелинейную задачу с учетом всех 
членов уравнения (6), а задачу устойчивости решения этого диффе-
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ренциального уравнения, используя, например, методы, предложен-
ные в работе [16]. В этом случае уравнение (6) следует привести 
к нормальной системе дифференциальных уравнений и оценить 
устойчивость решения на основании теорем Ляпунова и Четаева.  

 

Диаграмма Айнса — Стретта. Экспериментальные данные: 
1 — область устойчивости; 2 — область неустойчивости 

 
Теорема 1 (Ляпунова). Пусть дана нормальная система двух урав-

нений: 

( )1
1 1 2, , ,=dx f t x x

dt
 ( )2

2 1 2, , .=dx f t x x
dt

                         (7) 

Пусть существует дифференцируемая функция ( )1 2, ,ϑ x x  удовле-
творяющая условиям:  

1) ( )1 2, 0ϑ ≥x x  и 0ϑ =  только при 1 2 0,= =x x  т. е. функция ϑ  
имеет строгий минимум в начале координат; 

2) полная производная вдоль решения ( )1 1 ,=x x t  ( )2 2=x x t  сис-
темы (7) имеет: 

( ) ( )1 2
1 1 2 2 1 2

1 2 1 2
, , , , 0,ϑ ∂ϑ ∂ϑ ∂ϑ ∂ϑ= + = + ≤

∂ ∂ ∂ ∂
dx dxd f t x x f t x x

dt x dt x dt x x
 при 0.≥t t  

Тогда решение устойчиво по теореме Ляпунова. Если ( )2 2
1 2 ,+ ≥ δx x  

( ) / ( ) 0,ϑ ≤ −β <dd t  0≥t t  вне сколь угодно малой окрестности точки 
покоя, где β  — постоянная величина, то решение системы (7), а следо-
вательно, и решение уравнения (6) асимптотически устойчиво.  

Теорема 2 (Четаева). Пусть в некоторой замкнутой δ-окрест- 
ности начала координат существует дифференцируемая функция 

( )1 2, 0,ϑ ≥x x  удовлетворяющая условиям:  
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1) в сколь угодно малой окрестности начала координат суще-
ствует область, в которой 0ϑ >  и 0ϑ =  на части границы области;  

2) в этой области полная производная функции ( )1 2, 0ϑ ≥x x  име-
ет вид: 

( ) ( )1 2
1 1 2 2 1 2

1 2 1 2
, ,  , , 0      .ϑ ∂ϑ ∂ϑ ∂ϑ ∂ϑ= + = + >

∂ ∂ ∂ ∂
dx dxd f t x x f t x x

dt x dt x dt x x
 

Причем для любого 0α >  существует такое 0,β >  что из условия 

( )1 2  ,ϑ ≥ αx x  следует неравенство 0.ϑ ≥ β >d
dt

 Тогда точка покоя 

1 2 0= =x x  системы (7), а следовательно, решение уравнения (6) не-
устойчиво.  

Выводы. На основании общей теории пологих оболочек предло-
жен метод расчета динамической устойчивости изотропной и орто-
тропной цилиндрической оболочки при действии осевой силы и цик-
лический осевой силы. Проведенное исследование позволяет сделать 
следующие выводы. 

1. Скорость нагружения определенным образом влияет на вели-
чину критической динамической нагрузки, увеличивая ее значение 
при кратковременном нагружении.  

2. Цикличность нагружения способно вызвать явление парамет-
рических колебаний конструкций. В зависимости от конструктивных 
особенностей оболочки такие колебания могут происходить либо 
в устойчивой, либо в неустойчивой области.  

3. Если оболочка находится в устойчивой области, цикличность 
нагружения не влияет на несущую способность оболочки, а если 
в неустойчивой области — ее прогибы возрастают в зависимости от 
числа циклов нагружения. 
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Simulation of dynamic stability of a cylindrical shell 
under cyclic axial impact 

© V.M. Dubrovin, T.A. Butina 
Bauman Moscow State Technical University, Moscow, 105005, Russia 

 
In this article we suggest a method for calculating the dynamic stability of a cylindrical 
shell with its axial compressive time-varying load, and cyclic axial load, which varies 
according to a certain law. As an example, we consider the axial load, changing linearly 
and the cyclic load, which varies according to the harmonic law. To show the cyclic load, 
we use Ince — Strutt diagram, defining the stable and unstable regions of the shell fluc-
tuations. 
 
Keywords: cylindrical shell, deflection, equilibrium position, chart, dynamic factor, sta-
ble region, unstable region, parametric resonance. 
 

 Volmir A.S. Ustoichivost deformiruemykh system [Stability of deformable 
systems]. Moscow, Nauka Publ., 1967, 984 p. 

 Dimitrienko Yu.I. Nelineynaya mehanika sploshnoy sredy [Nonlinear 
continuum mechanics]. Moscow, Fizmatlit Publ., 2009, 624 p. 

 Rabotnov Yu.N. Problemy mekhaniki deformiruemogo tverdogo tela. 
Izbrannye trudy [The problems of solid mechanics. Selected works]. Moscow, 
Nauka Publ., 1991, 194 p. 

 Zhilin P.A. Aktualnye problemy mekhaniki. [Problems in Mechanics]. 
St. Petersburg, Politechnic University Publ., 2006, 306 p. 

 Vlasov V.Z. Izbrannye trudy. Obschaya teoriya obolochek. V 3 t. T. 1. Ocherk 
nauchnoi deyatelnosti [Selected works. The general theory of shells. In 3 vol. 
Vol. 1. Outline of research activities]. Moscow, AS USSR Publ., 1962, 528 p. 

 Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 t. T. 2. Universalnye zakony 
mekhaniki i elektrodinamiki sploshnoy sredy [Continuum Mechanics. In 4 vol. 
Vol. 2. Universal laws of continuum mechanics and electrodynamics]. Moscow, 
BMSTU Publ., 2011, 560 p. 

 Belonosov S.M. Matematicheskoe modelirovanie ravnovesnykh sostoyaniy 
uprugikh tonkikh obolochek [Mathematical modeling of equilibrium states of 
thin elastic shells]. Moscow, Nauka Publ., 1993, 158 p. 

 Zhilin P.A. Osnovy teorii obolochek [Fundamentals of the theory of shells]. 
St. Petersburg, Politechnic University Publ., 2006, 166 p. 

 Dubrovin V.M., Butina T.A. Inzhenernyy zhurnal: nauka i innovatsii — 
Engineering Journal: Science and Innovation, 2013, no. 9 (21). 
DOI: 10.18698/2308-6033-2013-9-957 

 Algazin O.D., Butina T.A., Dubrovin V.M. Vestnik MGTU im. N.E. Baumana, 
Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical 
University. Ser. Natural Sciences, 2011, spec. iss. “Mathematical modeling”, 
pp. 70–72. 

 Dubrovin V.M., Butina T.A. Matematicheskoe modelirovanie i chislennye 
metody — Mathematical Modeling and Computational Methods, 2015, no. 2 (6), 
pp. 46–57. 

 Dubrovin V.M., Butina T.A. Inzhenernyy zhurnal: nauka i innovatsii — 
Engineering Journal: Science and Innovation, 2014, no. 6 (30).  
DOI: 10.18698/2308-6033-2014-6-1237 



В.М. Дубровин, Т.А. Бутина 

32 

 Dubrovin V.M., Butina T.A. Inzhenernyy zhurnal: nauka i innovatsii — 
Engineering Journal: Science and Innovation, 2014, no. 4 (28).  
DOI: 10.18698/2308-6033-2014-4-1233 

 Butina T.A., Dubrovin V.M. Vestnik MGTU im. N.E. Baumana, Ser. 
Estestvennye nauki — Herald of the Bauman Moscow State Technical University. 
Ser. Natural Sciences, 2012, special iss., no. 3 “Mathematical modeling”, 
pp. 127–133. 

 Bushuev A.Yu., Yakolev D.O. Vestnik MGTU im. N.E. Baumana, Ser. 
Estestvennye nauki — Herald of the Bauman Moscow State Technical University. 
Ser. Natural Sciences, 2011, special iss. “Mathematical modeling”, pp. 66–69. 

 Narasimhan K.Y., Hoff N.J. Trans. ASME, ser. E, 1971, no. 1, vol. 38, pp. 160–172. 
 
Dubrovin V.M. graduated from Saratov State University. Cand. Sci. (Eng.), Assoc. Pro-
fessor at Bauman Moscow State Technical University, specialist in the field of strength 
and stability of deformable systems. Author of five inventions.  
e-mail:dubrovinvm1934@yandex.ru 
 
Butina T.A. graduated from Moscow Institute of Physics and Technology. Cand. Sci. 
(Phys. & Math.), Assoc. Professor at Bauman Moscow State Technical University, spe-
cialist in the field of strength and stability of deformable systems. 
e-mail: butina_ta@mail.ru 
 


