531.6.011.32:532.582.4:517.958 Construction of a semi-infinite equivalent body in mathematical modeling of subsonic separated axisymmetric flow

Timofeev V. N. (Bauman Moscow State Technical University)

MATHEMATICAL MODELING, SUBSONIC SEPARATION FLOW, CONCEPT OF VISCOUS-INVISCID INTERACTION, EQUIVALENT BODY, DISCRETE VORTEX METHOD, BASE PRESSURE.


doi: 10.18698/2309-3684-2016-4-6783


The purpose of the work was to do mathematical modeling of axisymmetric body separation flow at subsonic velocities of incident flow. In our research we used the concept of viscous-inviscid interaction. We found velocities and pressures on the surface of the body under study according to the results of calculating of some equivalent body inviscid flow. The wake turbulence effect was simulated by the tailed section of the equivalent body. We examined the semi-infinite tailed sections of the equivalent body instead of the tailed sections of finite length. Moreover, we studied flow separation conditions in the base region. For the numerical simulation we used the discrete vortex method. The base pressure was found by Horner formula. We carried out mathematical modeling of the flow around cylindrical bodies with the head part of the ogival form.


[1] Gogish A.V., Stepanov G.Yu. Turbulentnye otryvnye techeniya [Turbulent separated flows]. Moscow, Nauka Publ., 1979, 368 p.
[2] Plyusnin A.V. Matematicheskoe modelirovanie i chislennye metody — Маthematical Modeling and Computational Methods, 2014, no. 2, pp. 77–100.
[3] Timofeev V.N. Matematicheskoe modelirovanie dozvukovogo prostranstvennogo obtekaniya tel [Mathematical modeling of subsonic spatial body flow]. Aktualnye napravleniya razvitiya prikladnoi matematiki v energetike, energoeffektivnosti i informatsionno-kommunikatsionnykh tekhnologiyakh: Sbornik trudov mezhdunar. nauch. konf., posvyashch. 180-letiyu MGTU im. N.E. Baumana [Topical areas of applied mathematics in the energy sector, energy and information and communication technologies: coll. pap. of the international scientific conference dedicated to the 180th anniversary of Bauman Moscow State Technical University]. Moscow, BMSTU Publ., 2010, pp. 198–202.
[4] Timofeev V.N., Bushuev A.Yu. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta — Vestnik Saratov State Technical University, 2012, no. 1 (64), issue 2, pp. 11–14.
[5] Gogish A.V., Stepanov G.Yu. Otryvnye i kavitatsionnye techeniya [Separated and cavitational flow]. Moscow, Nauka Publ., 1990, 384 p.
[6] Ginevskiy A.S. Teoriya turbulentnykh struy i sledov [The theory of turbulent jets and traces]. Moscow, Mashinostroenie Publ., 1969, 400 p.
[7] Timofeev V.N., Bushuev A.Yu. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, no. 9. Available at: http://engjournal.ru/catalog/mathmodel/aero/967.html
[8] Sobolev S.L. Uravneniya matematicheskoy fiziki [Equations of mathematical physics]. Moscow, Nauka Publ., 1992, 432 p.
[9] Loytsyanskiy L.G. Mekhanika zhidkosti i gaza [Fluid Mechanics]. Moscow, Nauka Publ., 1987, 676 p.
[10] Dimitrienko Yu.I. Mekhanika sploshnoi sredy. V 4 tomakh. Tom 2. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy. [Continuum mechanics. In 4 vols. Vol. 2. Universal laws of mechanics and electrodynamics of continuous media.]. Moscow, BMSTU Publ., 2011, 560 p.
[11] [Dimitrienko Yu.I. Mekhanika sploshnoi sredy. V 4 tomakh. Tom 1. Tenzornyi analiz [Continuum mechanics. In 4 vols. Vol. 1. Tensor analysis]. Moscow, BMSTU Publ., 367 p.
[12] Belotserkovskiy S.M., Nisht N.I. Otryvnoe i bezotryvnoe obtekanie tonkikh krylev idealnoi zhidkostyu [Separated and steady thin wings flow by ideal fluid]. Moscow, Nauka Publ., 1978, 352 p.
[13] Lifanov I.K. Metod singulyarnykh integralnykh uravneniy i chislennyi eksperiment [The method of singular integral equations and numerical experiment]. Moscow TOO “Yanus”, 1995, 520 p.
[14] Belotserkovskiy S.M., Lifanov I.K. Chislennye metody v singulyarnykh integralnykh uravneniyakh i ikh primenenie v aerodinamike, teorii uprugosti, elektrodinamike [Numerical methods in singular integral equations and their application in aerodynamics, theory of elasticity, electrodynamics]. Moscow, Nauka Publ., 1985, 256 p.
[15] Hoerner S.F. Journal of the Aeronautical Sciences, 1950, vol. 17, no. 10, pp. 622–628.
[16] Timofeev V.N. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2014, no. 10. Available at: http://engjournal.ru/catalog/mathmodel/aero/1246.html.


Timofeev V. Construction of a semi-infinite equivalent body in mathematical modeling of subsonic separated axisymmetric flow. Маthematical Modeling and Coтputational Methods, 2016, №4 (12), pp. 67-83



Download article

Количество скачиваний: 546