Рубрика: "01.02.00 Механика"



533.6.07 Сверхзвуковое течение в осесимметричном канале

Максимов Ф. А. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2015-1-109120


Разработанный метод расчета сверхзвукового течения внутри осесимметричного канала учитывает образование отраженных от стенок канала волн и их влияние на течение внутри канала. Благодаря этому удается прогнозировать не только аэродинамические свойства аэродинамической формы в зависимости от ее местоположения в канале, но и воздействие находящейся в этом канале аэродинамической формы на стенки такого канала.


Максимов Ф. А. Сверхзвуковое течение в осесимметричном канале. Математическое моделирование и численные методы, 2015, №1 (5), c. 109-120



539.3 Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования

Белкин А. Е. (МГТУ им.Н.Э.Баумана), Даштиев И. З. (ЦНИИСМ), Лонкин Б. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-3954


Представлена математическая модель вязкоупругого поведения полиуретана СКУ-ПФЛ-100 для диапазона деформаций 0...30 % и умеренно высоких скоростей деформирования, не превышающих значения 10−1. Для определения вязкой составляющей деформации применена реологическая модель Бергстрема – Бойс. Связь напряжения с упругой составляющей деформации описана с помощью потенциала Арруды – Бойс. Для определения параметров модели использовались экспериментальные диаграммы сжатия полиуретана, полученные на машине Instron Electropuls 1000 при различных скоростях деформирования. Приведены значения параметров модели, найденные путем минимизации функции отклонений расчетных величин от результатов эксперимента. Показано, что в рассмотренном диапазоне деформаций и их скоростей модель позволяет описать поведение полиуретана с достаточной для практических целей точностью. Модель предназначена для расчета полиуретановых деталей амортизаторов, поглощающих аппаратов, буферов и других конструкций, испытывающих динамические нагрузки.


Белкин А. Е., Даштиев И. З., Лонкин Б. В. Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 39-54



629.762 Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 1. Способы, не использующие регуляризацию

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-6888


Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.


Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 1. Способы, не использующие регуляризацию. Математическое моделирование и численные методы, 2016, №1 (9), c. 68-88



531.6.011.32:532.582.4:517.958 Построение полубесконечного эквивалентного тела при математическом моделировании дозвукового отрывного осесимметричного обтекания

Тимофеев В. Н. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-6783


Проведено математическое моделирование процесса отрывного обтекания осесимметричных тел при дозвуковых скоростях набегающего потока на основе концепции вязко-невязкого взаимодействия. Скорости и давления на поверхности исследуемого тела найдены по результатам расчета невязкого обтекания некоторого эквивалентного тела. Влияние спутного следа смоделировано хвостовым участком эквивалентного тела. Вместо хвостовых участков конечной длины были рассмотрены полубесконечные хвостовые участки эквивалентного тела. Изучены режимы течения с отрывом потока в донной области. Для численного моделирования использован метод дискретных вихрей. Донное давление найдено по формуле Хорнера. Проведено математическое моделирование обтекания цилиндрических тел с головной частью оживальной формы.


Тимофеев В. Н. Построение полубесконечного эквивалентного тела при математическом моделировании дозвукового отрывного осесимметричного обтекания. Математическое моделирование и численные методы, 2016, №4 (12), c. 67-83



539.3 Моделирование динамической устойчивости цилиндрической оболочки при циклическом осевом воздействии

Дубровин В. М. (МГТУ им.Н.Э.Баумана), Бутина Т. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-3-2432


Предложен метод расчета динамической устойчивости цилиндрической оболочки при нагружении ее осевой сжимающей нагрузкой, изменяющейся во времени, и осевой циклической нагрузкой, которая изменяется по определенному закону. В качестве примера рассмотрены случаи осевой нагрузки, меняющейся по линейному закону, и циклической нагрузки, которая меняется по гармоническому закону. Для циклического нагружения приведена диаграмма Айнса — Стретта, определяющая области устойчивости и неустойчивости колебаний оболочки.


Дубровин В. М., Бутина Т. А. Моделирование динамической устойчивости цилиндрической оболочки при циклическом осевом воздействии. Математическое моделирование и численные методы, 2016, №3 (11), c. 24-32



539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-323


Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23



532.527:551.465 Гидродинамические реакции в модели циркуляционного обтекания трубопровода придонным морским течением

Владимиров И. Ю. (Институт океанологии им. П.П. Ширшова РАН), Корчагин Н. Н. (Институт океанологии им. П.П. Ширшова РАН), Савин А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-4157


Получено аналитическое решение модельной задачи о волновом воздействии стратифицированного течения на подводный трубопровод в случае циркуляционного обтекания. Проведены численные расчеты гидродинамических реакций для реальных морских условий. Найдены значения параметров потока, при которых волновое сопротивление и подъемная сила трубопровода достигают максимумов.


Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Гидродинамические реакции в модели циркуляционного обтекания трубопровода придонным морским течением. Математическое моделирование и численные методы, 2015, №3 (7), c. 41-57



629.1.028 Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой

Жилейкин М. М. (МГТУ им.Н.Э.Баумана), Сарач Е. Б. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-1740


В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. При этом их кинематические схемы также могут быть весьма разнообразны. Сбор требуемого объема информации для семейств автомобилей, различных по конструкции и эксплуатационным характеристикам, представляется неосуществимым. Провести полные аналитические исследования по определению соответствующих характеристик не представляется возможным. Эта задача с успехом может быть решена только с помощью моделирования.
Разработана математическая модель движения МКМ, особенностью которой является то, что скорость машины задается не принудительно, а формируется силами взаимодействия вращающихся колесных движителей с опорным основанием. Это позволяет получить высокую точность при моделировании реальных процессов движения МКМ по неровностям. Разработанная модель может быть применена для исследования различных законов управления подвеской многоосных колесных машин.


Жилейкин М. М., Сарач Е. Б. Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой. Математическое моделирование и численные методы, 2015, №3 (7), c. 17-40



539.3 Асимптотическая теория термоползучести многослойных тонких пластин

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-1836


Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.


Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36



<< 2 >>