doi: 10.18698/2309-3684-2016-1-5267
Mathematical modeling of the high-velocity element formation process based on finite element method is presented. The proposed approach enables considering geometrical imperfections of the explosive device. The article contains general description of the proposed mathematical model including corresponding numerical algorithms. Selection of the suitable finite element formation is performed. Practical application of the proposed method is illustrated on the example of analysis of the imperfection influence on the kinematical and geometrical parameters of the elements.
[1] Attetkov A.V., Gnuskin A.M., Pyryev V.A., Sagidullin G.G. Rezka metallov vzryvom [Explosive metal cutting]. Moscow, SIP RIA, 2000, 260 p.
[2] Takanao S., Hirotaka S., Chisato O., Hajime Ya., Yasuhiko T., Yasuhiro A., Makoto Yo. Acta Astronautica, 2013, vol. 84, pp. 227–236.
[3] Baskakov V.D., Tarasov V.A., Kolpakov V.I., Sofyin A.S. Oboronnaya tekhnika — Defense Technology, 2010, no. 1–2, p. 90.
[4] Kolpakov V.I., Baskakov V.D., Kalugin V.T., Shikunov N.V., Soyin A.S. Izvestiya Rossiyskoy akademii raketnykh i artilleriyskikh nauk — Proceedings of the Russian Academy of Missile and Artillery Science, 2012, no. 71, pp. 70–74.
[5] Zarubin V.S., Kuvyrkin G.N. Matematicheskoye modelirovaniye i chislennyye metody — Mathematical Modeling and Computational Methods, 2014, no. 1, pp. 5−17.
[6] Kolpakov V.I. Nauka i obrazovaniye. Elektronnyy Zhurnal — Science and Education. Electronic Journal, 2012, no. 2. DOI 77-30569/334177.
[7] Pappu S., Murr L. E. Journal of Materials Science, 2002, vol. 37, iss. 2, pp. 233–248.
[8] Liu J., Gu W., Lu M., Xu H., Wu S. 28th International Symposium on Ballistics, 2014, vol. 10, iss. 2, pp. 119–123.
[9] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 2. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy [Continuum mechanics. In 4 vols. Vol. 2. Universal laws of continuum mechanics and electrodynamics]. Moscow, BMSTU Publ., 2011, 559 p.
[10]Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 4. Osnovy mekhaniki tverdogo tela [Continuum mechanics. In 4 vols. Vol. 4. Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
[11]Orlenko L.P., ed. Fizika vzryva [Physics of explosion]. Moscow, Fizmatlit Publ., 2004, vol. 2, 656 p.
[12]Hallquist J.O. LS Dyna theory manual. Livermore Software Technology Corporation, Livermore, 2005, 862 p.
[13]Zenkievitch O. Metod konechnykh elementov v tekhnike [Finite element method in technics]. Moscow, Mir Publ., 1975, 541 p.
[14]Belytschko T., Liu W.K., Moran B., Elkhodary Kh. Nonlinear Finite Elements for Continua and Structures. Wiley, 2001, 650 p.
[15]Dimitrienko Yu.I., Veretennikov A.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, no. 9. DOI 10.18698/2308-6033-2013-9-1118.
[16]Johnson G.R., Stryk R.A. International Journal of Impact Engineering, 2006, no. 32, pp. 1621–1634.
[17]Asmolovskyy N.A., Baskakov V.D., Tarasov V.A. Izvestiya visshikh uchebnikh zavedenyy. Mashinostroyeniy — Proceedings of Higher Educational Institutions. Маchine Building, 2013, no. 8, pp. 8–14.
[18]Asmolovskyy N.A., Baskakov V.D., Zarubina O.V. Vestnik MGTU im. N.E. Baumana. Ser. Mashinostroyeniye — Herald of Bauman Moscow State Technical University. Ser. Mechanical Engineering, 2015, no. 5, pp. 71–84.
Asmolovskyy N., Baskakov V., Boyarskaya R., Zarubina O., Tarasov V. Mathematical modeling of shock loading of the meniscus liner. Маthematical Modeling and Coтputational Methods, 2016, №1 (9), pp. 52-67
Количество скачиваний: 1329