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Рассмотрена задача математического моделирования процесса формирования 
высокоскоростного элемента из менисковой облицовки методом конечных эле-
ментов с учетом погрешностей геометрии взрывного устройства. Приведена по-
дробная расчетная схема процесса. Представлен обзор математической модели и 
численных алгоритмов. Проведена оценка влияния типа конечного элемента на 
конфигурацию формируемого высокоскоростного элемента. Практическое приме-
нение предлагаемого подхода показано на примере анализа влияния неравномерно-
сти толщины и несоосности сферических поверхностей менисковой облицовки на 
кинематические и геометрические параметры формируемого высокоскоростного 
элемента. 

Ключевые слова: формирование, высокоскоростной элемент, математическое 
моделирование, погрешности. 

Введение. Взрывные устройства (ВУ), формирующие высоко-
скоростные элементы (ВЭ), применяют для решения задач разруше-
ния в металлургической, горнодобывающей, космической и военной 
отраслях промышленности [1, 2]. Принцип действия таких 
устройств основан на ударно-волновом обжатии менисковой обли-
цовки продуктами детонации (ПД), при этом облицовка претерпе-
вает значительные деформации, в результате чего происходит 
формирование компактного или удлиненного ВЭ, скорость которо-
го в несколько раз превышает скорость звука в воздухе. Несмотря 
на осевую симметрию ВУ, наличие неоднородностей свойств дета-
лей и геометрические погрешности облицовки обусловливают обра-
зование радиальной vR и угловой ω скоростей ВЭ [3]. Полетные ди-
станции ВЭ значительно превышают характерные размеры ВУ, по-
этому точность попадания в цель и условия встречи ВЭ с преградой 
зависят от его начальных кинематических параметров и аэродина-
мических характеристик [4]. Геометрию и принцип функциониро-
вания ВУ иллюстрирует рис. 1. 

При разработке подобных устройств перед конструктором и тех-
нологом стоят задачи назначения допусков, выбора рационального 
процесса механической обработки, оценки точности попадания ВЭ  
в цель и др., непосредственно связанные с определением влияния по- 
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грешностей ВУ на характеристики действия ВЭ. В связи с высокими 
затратами материальных ресурсов на экспериментальную отработку 
ВУ математическое моделирование является важнейшим этапом при 
их разработке [5]. 

 

 
Рис. 1. Геометрическая модель и принцип функционирования ВУ: 

1 — корпус; 2 — заряд взрывчатого вещества; 3 — облицовка; 4 — точка 
инициирования; 5 — сформированный ВЭ; 6 — преграда;  , ,A Rv v   —  
            соответственно осевая, радиальная и угловая скорости ВЭ 

Данная работа посвящена математическому моделированию про-
цесса формирования ВЭ с учетом технологических погрешностей 
малой амплитуды. Традиционно процесс взрывного формоизменения 
рассматривается в пространственном описании (подход Эйлера) с 
помощью специализированных гидродинамических решателей [6, 7]. 
Однако в связи с резким ростом числа элементов дискретизации дан-
ный подход неприемлем для задач, требующих учета малых по ам-
плитуде несовершенств геометрии. В качестве альтернативы предла-
гается подход Лагранжа. 

Расчетная схема. Для демонстрации возможностей предлагаемого 
подхода без привязки к конкретному изделию рассмотрим упрощенный 
макет ВУ (см. рис. 1). В качестве материала облицовки использована 
сталь 11кп (конструкционная углеродистая сталь повышенной пластич-
ности), корпуса — сталь Ст3, заряда взрывчатого вещества — состав 
ТГ-40. Параметры материалов представлены в работе [6].  

Процесс формоизменения является быстропротекающим (поряд-
ка 100 мкс [6, 7]), поэтому применимо адиабатическое приближение. 
Кроме того, влиянием воздуха при формировании ВЭ можно прене-
бречь [8]. Процесс формоизменения рассматривается в трехмерной 
постановке, что позволяет проводить анализ влияния произвольных 
геометрических погрешностей путем внедрения неравномерностей в 
расчетную сетку. 

Математическая модель. Движение ВУ рассматривается в трех-
мерной декартовой системе координат. Уравнения движения и нераз-
рывности в дифференциальной форме имеют следующий вид [9, 10]: 
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где T  — тензор напряжений Коши; f  — вектор плотности массовых 

сил;   — текущая плотность материала; 
u

t





v  — вектор скорости; 

0  — начальная плотность материала; т  F E u  — градиент 
деформаций; E  — единичный тензор; u  — вектор перемещений;  

det  — определитель; ,    — набла-операторы в актуальной и от-
счетной конфигурациях;   — обозначение тензорного произведения.  

Начальным условием является отсутствие перемещений, ско-

ростей и ускорений 
t



v

 для всех точек рассматриваемых тел в 

начальный момент времени. Граничными условиями являются при-
липания границ контакта ПД к корпусу и облицовке, а также условия 
свободной поверхности на внешней границе корпуса и облицовки: 

 
т

| 0; n T   (3) 

 | | ,
u uA B u u  (4) 

где n  — вектор нормали к поверхности; т  — граница свободной 

поверхности; u  — граница раздела тел A и B; ,A Bu u  — перемеще-
ния границ тел A и B. 

Поведение материалов описывается следующими соотношениями:  

  , ;p p E    (5) 

  , ,FT ε D  (6) 

где  т1

2
  D v v  — тензор скоростей деформаций. 

Уравнение (5) представляет собой калорическое уравнение со-
стояния [11], связывающее давление p  c плотностью материала   и 
внутренней энергией ;E  уравнение (6) упрощенно отражает связь меж-
ду тензорами напряжений ,T  деформаций ε  и скоростей деформаций 

.D  В зависимости от выбора модели уравнение (6) может обладать 
большим набором аргументов. Информация об уравнении состояния 
используется также на этапе обновления напряжений. 

Для определения энергии в уравнении состояния применим закон 
сохранения энергии для адиабатического процесса [12]:  
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   ;p q  s T E   (7) 
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;
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p q   T E  (8) 

   ,
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 
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 
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где s  — девиатор напряжений; q  — искусственная вязкость; V  — 
объем; знак « »  обозначает двойное скалярное умножение. 

Искусственная вязкость необходима для демпфирования возму-
щений, связанных с движением фронта ударных волн:  

 
  2

0 1   , 0;

0,  0,

l C l C a
q

       
  

D E D E D E

D E
  (10) 

где 0,C  1C  — коэффициенты квадратичной и линейной вязкости; 

l  — характерный размер; a  — локальная скорость звука. 
Состояние материала облицовки описывается ударной адиабатой 

Ми — Грюнайзена в упрощенном виде [12]: 

 
 

2 0
0

0
1

1 1
2

,
1 1

C
E

p
s V

             
  

  (11) 

где C , 0 , 1s  — параметры уравнения состояния материала; 
1

1
V

    — 

сжатие; V  — относительный объем. 
Для описания поведения ПД используем уравнение состояния в 

форме JWL [12]: 

    1 2
1 2

1 exp 1 exp ,
W W WE

p A R V B R V
R V R V V

   
         

   
  (12) 

где 1R , 2R , A , B , W  — параметры модели. 

Упругопластическое поведение облицовки описывается гидроди-
намической моделью *MAT_ELASTIC_PLASTIC_HYDRO [12]: 

    0 1 2 max ,0 ,p
Y hE a pa p         (13) 

где ,Y  0  — предел текучести и начальный предел материала с уче-

том и без учета эффекта упрочнения; hE  — модуль пластического 
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упрочнения; p  — действующее значение пластических деформаций; 

1,a  2a  — линейный и квадратичный коэффициенты упрочнения в ре-

зультате действия давления. 
Для описания поведения материала корпуса используется упруго- 

пластическая модель с упрочнением *MAT_PLASTIC_KINEMATIC.
Обе пластических модели включают в себя также механизм разрушения 
по критерию допустимых деформаций и значению давления. Модели 
материала реализованы с помощью алгоритма радиального возврата на 
поверхность пластичности. Подробное описание алгоритма приведено в 
работе [12]. При этом проводится разделение тензора скоростей дефор-
маций на упругую eD  и пластическую pD  составляющие:

 .p e D D D   (14) 

Запишем уравнение движения в вариационном виде [14]: 

 т т т т 0,n
V V V

dV dV d dV


              D T v f v t v a   (15) 

где v  — виртуальная скорость; D  — тензор виртуальных скоростей 

деформаций;   — граница среды; nt  — вектор напряжений; 
t




v

a  — 

ускорение. 
Численный метод. Решение системы уравнений (1) и (2) прово- 

 

дится методом конечных элементов, интегрирование по времени — 
методом конечных разностей. Конечно-элементная дискретизация 
осуществляется путем разбиения области V на множество конечных 
элементов: 

 ,h e
e

V V V    (16) 

где eV  — область одного конечного элемента e; hV  — область дис-

кретизации. 
Интегралы в уравнении (15) могут быть аппроксимированы сле-

дующим образом: 

 ( ) ( ) ( ) .

h eeV V V

dV dV dV         (17) 

Тогда, используя эту аппроксимацию, преобразуем исходное 
уравнение (15) к виду 
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т т т т ,

e e e e

n
e eV V V V

dV dV dV d


   
             
      

    v a D T v f v t   (18) 

где eV  — граница объема eV . 

Поле скоростей и тензор деформаций для каждого конечного эле-
мента дискретизации определяются с помощью линейной комбинации 
функций формы и скоростей узлов элемента дискретизации [13]: 

 ;h N v v v   (19) 

 ;h LN B D D v := v   (20) 

 ;h N    v v v   (21) 

 : ,h LN B      D D v v   (22) 

где N  — матрица функций формы; L  — дифференциальный опера-
тор; B  — матрица производных функций формы конечного элемен-
та; индекс «h» обозначает аппроксимированные значения. 

Далее проведем оценку каждого из слагаемых вариационного 
уравнения:  

 т т т ;

e eV V

dV N NdV     v a v Ea   (23) 

 т т т ;

e eV V

dV B dV    D T v T   (24) 

 т т т ;

e eV V

dV N dV     v f v f   (25) 

 т т т .

e e

n n
V V

d N d
 

     v t v t   (26) 

Для удобства вычислений введем матрицу масс: 

 т d .

eV

M N N V  E   (27) 

Суммируя слагаемые уравнений (23)–(26), запишем дискретиза-
цию вариационного уравнения равновесия: 
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 т т т т  0.

e e e

n
e V V V

M B dV N dV N d


  
        

    
   v a T f t   (28) 

Поскольку тv  произвольно, то уравнение (27) может быть пре-
образовано к следующему виду: 

 int ext ;M  a f f   (29) 

 int т ;

eV

B dV f T   (30) 

 ext т т  ,

e e

n
V V

N dV N d


    f f t   (31) 

где int ,f  extf  — векторы внутренних и внешних сил. 
Численный алгоритм. Время процесса разделим на число мо-

ментов, причем шаг nt  определим из следующих соотношений: 

  1/2 1 1/2 1 1/2 1/21
;   ;  ,

2
n n n n n n n n nt t t t t t t t t               (32) 

где t  — момент времени; индекс сверху указывает на номер n  мо-
мента.  

На основе соотношений для центральной производной обновле-
ние скоростей в узлах элементов проводится в два шага: 

  1/2 1/2 ;n n n n nt t   v v a   (33) 

  1/2 1/2 .n n n n nt t   v v a   (34) 

Представим численный алгоритм расчета в следующем упрощен-
ном виде. 

1. Инициализация начальных параметров: скоростей, перемеще-
ний, напряжений, обнуление счетчика времени и т. д. 

2. Вычисление матрицы масс .M  
3. Процедура «GetForce». 

4. Вычисление ускорений:  1 ,n n nM  a f h  где nh  — вектор, 

компенсирующий нулевые энергетические моды. 
5. Для каждого временнóго шага :n  
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i 1 1/2 ,n n nt t t      1/2 11

2
n n nt t t   ; 

ii первый шаг обновления скоростей  1/2 1/2 ;n n n n nt t   v v a  

iii применение граничных условий по скоростям; 

iv обновление перемещений узлов 1 1/2 1/2;n n n nt    d d v  
v процедура «GetForce»; 

vi вычисление ускорения 1na ; 

vii второй шаг обновления скоростей 1 1/2n n  v v  

 1 1/2 1;n n nt t    a  

viii проверка баланса энергии. 
Процедура «GetForce» реализует следующий алгоритм вычисле-

ния вектора силы. 

1. Инициализация 0.n f  

2. Вычисление глобального вектора внешних сил в узлах ext, .nf  
3. Для каждого элемента :e  

i получение информации о перемещениях и ускорениях узлов 
элемента; 

ii интегрирование int, n
ef  методом Гаусса; 

iii вычисление внешних сил в узлах элемента ext, ;n
ef  

iv ext, int, ;n n n
e e e f f f  

v вычисление критического шага по времени; 

vi обновление глобального вектора .nf  
4. Обновление шага по времени. 
Необходимо отметить, что решение системы проводится в пакете 

LS-Dyna. Особенности реализации приведенного алгоритма описаны 
в работе [12]. 

Выбор типа конечного элемента. Ранее выполненные исследова-
ния [3, 4] показывают, что рассматриваемый тип ВУ, несмотря на осе-
вую симметрию, обладает высокой чувствительностью к неравномерно-
стям различной природы. Поэтому используемый численный метод 
должен, с одной стороны, адекватно описывать процесс формирования, 
а с другой, — не привносить численных артефактов. 

Для объемного конечного элемента с линейными функциями фор-
мы полное интегрирование требует вычисления значений функции в 
восьми гауссовых точках. Вследствие кинематических ограничений 
классический линейный конечный элемент при полном интегрировании 
обладает искусственно повышенной жесткостью, особенно в случае ис-
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каженной геометрии ВУ. Для снижения так называемой паразитной 
 

жесткости для конечного элемента и уменьшения вычислений применя-
ют методы сокращенного (Solid-2, ELFORM=2) и объемного интегриро-
вания (Solid-1, ELFORM=1). В таком случае рациональный выбор типа 
элемента не только определяет точность, но и скорость расчета [12, 14]. 
Следует отметить, что при использовании конечных элементов с объ-
емным или сокращенным интегрированием требуется контролировать 
деформационные моды с нулевой энергией (hourglassing) с помощью 
вспомогательного вектора .nh  Соответствующие алгоритмы приведены 
в работах [12, 14].  

Поскольку основной задачей исследования является математическое 
моделирование процесса формирования ВЭ при наличии геометрических 
погрешностей ВУ, моделирование проведем в трехмерной постановке.  
В первую очередь рассмотрим погрешности малой амплитуды, 
 

поэтому чувствительность и точность математической модели играют 
решающую роль при оценке влияния погрешностей на форму и гео-
метрию формируемого ВЭ. Тогда для простой качественной оценки 
эффектов искусственного искажения жесткости целесообразно рас-
смотреть идеальную осесимметричную модель в трехмерной поста-
новке. При этом наличие паразитной жесткости будет оказывать вли-
яние на асимметрию формы формируемого ВЭ [16]. Форма ВЭ и де-
формированная сетка на промежуточном этапе формирования для 
конечных элементов Solid-1 и Solid-2 приведены на рис. 2. Отметим, 
что Solid-2 приводит к неравномерному разрушению ВЭ и асиммет-
ричным искажениям формы в виде выраженных складок на его тор-
це, в то время как Solid-1 практически не искажает осевую симмет-
рию и не вызывает образования складок. 

 

 

Рис. 2. Формы ВЭ, полу-
чаемые в результате вы-
числительных экспери-
ментов с помощью ко-
нечных элементов Solid-1 
(а) и Solid-2 (б), в момент  
      времени t = 23 мкс 

 
Усовершенствование расчетной схемы. В результате тестирова-

ния математической модели установлено, что начиная с некоторого мо-
мента времени облицовка не изменяет своей осевой скорости vA (рис. 3). 
Необходимо отметить, что рассматривается быстропротекающий 
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процесс формирования, при котором влияние сил сопротивления среды 
считается пренебрежимо малым. Снижение ускорения свидетельствует 
об окончании энергетического обмена между ПД и облицовкой. Поэто-
му для увеличения скорости расчета корпус ВУ и ПД удаляют из рас-
четной модели в момент времени t* = 25 мкс. В общем случае t* зависит 
от геометрии ВУ. 

 

Рис. 3. Изменение  Av  и пере-
грузки n (отношение ускорения 
к ускорению свободного паде-
ния) облицовки во времени t  

 
При дискретизации в 650 тыс. элементов (из которых 60 тыс. — 

дискретизация облицовки) расчет по предложенной модели занимает 
около 3 ч на процессоре Intel Xeon E3. 

Сравнение результатов расчетов формы ВЭ и его осевой скорости vA 
с данными работ [7, 9] подтвердило адекватность предложенной ма-
тематической модели и принятых допущений. 

Практическое применение. Предложенный подход применяли 
для решения следующих технических задач:  

1) анализа закономерностей провоцирования складок ВЭ с помо-
щью неравномерностей толщины облицовки ВУ в периферийной ча-
сти [17]; 

2) анализа влияния погрешностей несоосности и неравномерности 
толщины облицовки ВУ на кинематические и геометрические пара-
метры ВЭ [18]. 

При решении задач рассматривали погрешности толщины обли-
цовки, заданные в виде тригонометрических гармоник [3]: 

   0 0
1 1

cos 1 cos ,
N N

n n n n
n n

a n a n
 

        
 



 


   

где   — толщина облицовки в плоскости поперечного сечения ВУ  
с учетом ее неравномерности; 0  — номинальное значение толщины 
облицовки в плоскости поперечного сечения ВУ; 1, 2, ,n N   — 
номер гармоники; N  — максимальный номер значимой гармоники; 

0na   — амплитуда n-й гармоники;   — угловая координата в 
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плоскости поперечного сечения ВУ, изменяющаяся в диапазоне 
0 2 ;    n  — начальная фаза n-й гармоники; n na a / 0  — отно-
сительная амплитуда n-й гармоники. 

Рассматриваемые геометрические погрешности облицовки схе-
матически изображены на рис. 4 и визуализированы, для этого na  

условно принято соизмеримым с 0 . 
 

 

Рис. 4. Схемы рассматриваемых 
геометрических погрешностей:  

1 — асимметрия, n = 1 (сечение);  
2 — модель неравномерности тол- 
                 щины, n = 6 

 

Ниже приведен численный алгоритм, используемый для решения 
поставленных задач. 

1. Подготовка исходной сетки, состоящей из цилиндрических тел. 
2. Цикл итераций по характерному параметру (относительная ам-
плитуда). 

2.1. Автоматическое генерирование расчетной сетки путем пе- 
 

ремещения узлов исходной сетки по номинальным геометри- 
 

ческим размерам устройства и параметрам погрешностей. 
2.2. Проведение вычислительного эксперимента по формиро-
ванию ВЭ с помощью пакета LS-Dyna. 
2.3. Экспорт результатов моделирования (координаты и скорости 
узлов, масса элементов, топология сетки) в матричном виде. 
2.4. Определение конечных элементов, образующих ВЭ с по-
мощью графа топологии. 
2.5. Определение положения и скорости центра масс ВЭ. 
2.6. Построение проекции профиля ВЭ на взаимно ортогональ-
ные плоскости. 
2.7. Определение угла поворота и угловой скорости ВЭ. 
2.8. Сохранение результатов расчета для ускорения последую- 
 

щего анализа. 
В качестве примера приведены результаты вычислительных экс-

периментов для менисковых облицовок ВУ со следующими конфи-
гурациями погрешностей в момент времени t*= 25 мкс: 

I — «идеальная» облицовка, 1a  = 0, 6a  = 0; 

II — облицовка с несоосностью, 1a  = 0,02, 6a  = 0; 

III — облицовка с неравномерностью толщины, 1a  = 0, 6a  = 0,03; 

IV — облицовка с несоосностью и неравномерностью толщины, 

1a = 0,02, 6a  = 0,03 при разности фаз 1 6 0;    
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V — облицовка с несоосностью и неравномерностью толщины,  

1a = 0,02, 6a  = 0,03 при разности фаз 1 6 / 2    . 

Профили сформированных ВЭ представлены на рис. 5, кинема-
тические параметры — в таблице. 

Кинематические параметры ВЭ, сформированных из облицовок  
различных конфигураций 

Конфигурация ,Av  м/с ,Rv  м/с ,  с–1 

I 1 890 0 0 
II 1 890 1,5 284 
III 1 885 0 0 
IV 1 885 1,3 429 
V 1 885 0,8 476 

 

Рис. 5. Контуры ВЭ без учета 
                      полости: 

I–V — номера конфигурации обли- 
                        цовки ВУ  

 
Результаты расчетов показывают, что гармоника n = 1 погрешно-

сти толщины облицовки практически не нарушает осесимметричную 
форму ВЭ (см. рис. 5, I–II) и вызывает у него появление доминирую-
щей кинематической погрешности — угловой скорости (см. табли-
цу). Гармоника n = 6 приводит в основном только к огранке кормо-
вой части ВЭ (рис. 5, III). Суперпозиция гармоник n = 1 и n = 6 до-
полнительных искажений в форму ВЭ не привносит (рис. 5, IV), од-
нако существенно влияет на значение угловой скорости, приобретае-
мой ВЭ (см. таблицу). Разность фаз гармоник погрешностей также 
оказывает влияние на угловую скорость. 

Выводы и рекомендации. Рассмотрены особенности математи-
ческого моделирования процесса взрывного формирования ВЭ мето-
дом конечных элементов. Показано, что при использовании пакета 
LS-Dyna конечный элемент Solid-1 не приводит к искажению формы 
ВЭ при его формировании в отличие от конечного элемента Solid-2. 
Для сокращения времени расчета предложено удалять элементы дис-
кретизации ПД и корпуса ВУ после окончания процесса энергетиче-
ского обмена между ПД и облицовкой. 
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Mathematical modeling of shock loading  
of the meniscus liner 

© N.A. Asmolovskyy, V.D. Baskakov, R.V. Boyarskaya, O.V. Zarubina, 
V.A. Tarasov 

Bauman Moscow State Technical University, Moscow, 105005, Russia 

Mathematical modeling of the high-velocity element formation process based on finite 
element method is presented. The proposed approach enables considering geometrical 
imperfections of the explosive device. The article contains general description of the pro-
posed mathematical model including corresponding numerical algorithms. Selection of 
the suitable finite element formation is performed. Practical application of the proposed 
method is illustrated on the example of analysis of the imperfection influence on the kin-
ematical and geometrical parameters of the elements. 

Keywords: formation, high-velocity element, modeling of the imperfections. 
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