Рубрика: "01.02.00 Механика"
doi: 10.18698/2309-3684-2015-2-7386
Предложен алгоритм идентификации параметров — постоянных времени турби-ны с использованием градиентного метода с настраиваемой моделью. Настраи-ваемая математическая модель имеет такую же структуру, как и объект иден-тификации. Критерий идентификации формируется на основе функции потерь, которая представляет собой невязку между левой и правой частями уравнения, описывающего настраиваемую модель. Тем самым удается избежать необходи-мости нахождения в явном виде решения нелинейного уравнения для настраивае-мой модели. Вместо выходного сигнала в модели используется сигнал, наблюдае-мый на выходе идентифицируемого объекта. Поскольку математические модели являются нелинейными, для решения задачи применены линеаризация Ньютона – Канторовича и аппарат матричных операторов. Рассмотрены особенности вы-числения вектора градиента, алгоритм идентификации и его организация. Приве-дены результаты идентификации двух постоянных времени для математической модели турбины ПТ-12/15-35/10М.
Корнюшин Ю. П., Егупов Н. Д., Корнюшин П. Ю. Идентификация параметров исполнительных устройств регуляторов паровой энергетической турбины с использованием аппарата матричных операторов. Математическое моделирование и численные методы, 2015, №2 (6), c. 73-86
doi: 10.18698/2309-3684-2016-1-3851
Выведены общие и приближенные уравнения крутильных колебаний круглого вязкоупругого стержня, вращающегося с постоянной угловой скоростью вокруг оси симметрии. Разработан алгоритм, позволяющий определить напряженно-деформированное состояние этого стержня. На основе полученных приближенных уравнений колебаний численно решена задача о его крутильных колебаниях. Проведен сопоставительный анализ результатов, полученных для экспоненциального
и слабосингулярного ядер оператора вязкоупругости. Даны оценки влияния вращения на колебания стержня.
Худойназаров Х. Х., Абдирашидов А. ., Буркутбоев Ш. М. Моделирование крутильных колебаний вязкоупругого круглого стержня, вращающегося с постоянной угловой скоростью. Математическое моделирование и численные методы, 2016, №1 (9), c. 38-51
doi: 10.18698/2309-3684-2015-2-322
Предложена модель микроструктуры двухфазных монокристаллических интерметаллидных сплавов в виде периодической структуры гексагонального типа, а также математическая модель упругопластического деформирования монокристаллического сплава, основанная на методе асимптотической гомогенизации периодических структур. Для фаз используется деформационная теория пластично-сти при активном нагружении с учетом эффекта их повреждаемости. Для численных расчетов по разработанной модели использован жаропрочный моно-кристаллический сплав ВКНА-1В. Проведены конечно-элементные расчеты микромеханических процессов деформирования и разрушения монокристаллического сплава ВКНА-1В. Установлено, что при растяжении максимальные значения параметра повреждаемости фаз, определяющего зону начала микроразрушения сплава, достигаются в зонах, прилегающих к поверхностям раздела фаз и в местах максимального искривления геометрической формы фаз. Проведены расчеты диаграмм деформирования жаропрочных сплавов в области пластичности, которые показали достаточно хорошее совпадение с экспериментальными данными.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Базылева О. А., Луценко А. Н., Орешко Е. И. Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа. Математическое моделирование и численные методы, 2015, №2 (6), c. 3-22
doi: 10.18698/2309-3684-2014-2-115126
В течение последних десятилетий наблюдаются изменения климата, выражающиеся в его глобальном потеплении. Эти изменения в основном связывают с антропогенным увеличением количества парниковых газов в атмосфере (главный из них — СО2). В статье рассматривается проблема и возможность стабилизации климата на современном уровне. Исследование ведется на основе сезонной глобальной совместной трехмерной гидродинамической модели климата, включающей модель Мирового океана с реальными глубинами и конфигурацией материков,
модель эволюции морского льда и энерго-влагобалансовую модель атмосферы. На первом этапе проведены расчеты прогнозирования климата до 2100 г. с использованием сценария роста СО2 А2, предложенного IPCC. Они дают увеличение среднегодовой поверхностной температуры атмосферы на 3,5 С. Проведены серии расчетов для оценки возможности стабилизации климата на уровне 2010 г. путем управления выбросами в стратосферу сульфатного аэрозоля, отражающего и рассеивающего часть приходящего солнечного излучения. Вычислены концентрации (альбедо) аэрозоля с 2010 до 2100 г., позволяющие стабилизировать среднегодовую температуру поверхностного слоя атмосферы. Показано, что таким путем невозможно добиться приближения климата к существующему, хотя можно значительно ослабить парниковый эффект. При условии однородного по пространству распределения аэрозоля в стратосфере можно стабилизировать среднюю глобальную температуру атмосферы, но при этом в низких и средних иротах климат будет холоднее на 0,1…0,2 С, а в высоких широтах — теплее на 0,2…1,2 С. Кроме того, эти различия имеют сильно выраженный сезонный ход — в зимний период они увеличиваются. Прекращение выбросов аэрозоля в 2080 г. приведет к быстрому увеличению средней глобальной температуры атмосферы, приближающейся в 2100 г. к значению температуры без аэрозоля.
Пархоменко В. П. Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля. Математическое моделирование и численные методы, 2014, №2 (2), c. 115-126
536.2 Эффективная теплопроводность композита в случае отклонений формы включений от шаровой
doi: 10.18698/2309-3684-2014-4-317
На основе математической модели теплового взаимодействия включения и матрицы выполнена оценка влияния отклонения формы включений от шаровой на эффективный коэффициент теплопроводности композита и связанное с таким отклонением возможное возникновение анизотропии композита по отношению к свойству теплопроводности. С использованием двойственной вариационной формулировки стационарной задачи теплопроводности в неоднородном теле построены двусторонние оценки эффективных коэффициентов теплопроводности.
Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Эффективная теплопроводность композита в случае отклонений формы включений от шаровой. Математическое моделирование и численные методы, 2014, №4 (4), c. 3-17
doi: 10.18698/2309-3684-2016-4-6783
Проведено математическое моделирование процесса отрывного обтекания осесимметричных тел при дозвуковых скоростях набегающего потока на основе концепции вязко-невязкого взаимодействия. Скорости и давления на поверхности исследуемого тела найдены по результатам расчета невязкого обтекания некоторого эквивалентного тела. Влияние спутного следа смоделировано хвостовым участком эквивалентного тела. Вместо хвостовых участков конечной длины были рассмотрены полубесконечные хвостовые участки эквивалентного тела. Изучены режимы течения с отрывом потока в донной области. Для численного моделирования использован метод дискретных вихрей. Донное давление найдено по формуле Хорнера. Проведено математическое моделирование обтекания цилиндрических тел с головной частью оживальной формы.
Тимофеев В. Н. Построение полубесконечного эквивалентного тела при математическом моделировании дозвукового отрывного осесимметричного обтекания. Математическое моделирование и численные методы, 2016, №4 (12), c. 67-83
doi: 10.18698/2309-3684-2014-1-1835
Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).
Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35
doi: 10.18698/2309-3684-2014-2-327
Рассмотрена двумерная краевая задача о прохождении плоской электромагнитной волны через периодическую слоистую среду, имеющую структуру одномерного фотонного кристалла. Структура имеет конечное число плоскопараллельных слоев, в которой каждая ячейка периодичности состоит из двух слоев с разными действительными значениями постоянной диэлектрической проницаемости и разными толщинами. Показано, что при некотором дополнительном условии, связывающем угол падения плоской волны, толщины слоев, частоту и диэлектрические проницаемости слоев, задача решается до конца в явном виде и приводит к простым выражениям для отраженного от структуры и прошедшего сквозь нее волновых полей. При этом в случае Н-поляризованного поля, в отличие от случая Е-поляризации, свойства данной среды зависят от отношения толщин слоев, умноженных на их диэлектрические проницаемости (при Е-поляризации — только от отношения толщин). В результате фотонный кристалл в зависимости от частоты поля может вести себя как идеально отражающая структура при тех же отношениях толщин слоев, при которых в случае Е-поляризации он становится волноведущей структурой, и наоборот. Произведено сравнение численных расчетов со случаем Е-поляризации.
Апельцин В. Ф., Мозжорина Т. Ю. Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения . Математическое моделирование и численные методы, 2014, №2 (2), c. 3-27
doi: 10.18698/2309-3684-2015-2-2345
Рассмотрен класс перспективных анизогридных конструкций, представляющих сетчатые оболочки из углепластика. Приведен краткий анализ существующих подходов к моделированию сетчатых конструкций. Для достоверного описания сложного поведения анизогридных конструкций при воздействии различных нагру-зок предложены математическая и вычислительная модели. Высокая степень точности и устойчивости вычислительной модели, основанной на разложениях неизвестных функций по базису Фурье и базису, состоящему из полиномов Чебы-шева, обусловлена отсутствием насыщения таких методов приближения. Эф-фективность предложенных моделей и методов показана на примере решения тестовых краевых задач и задачи осевого сжатия анизогридной цилиндрической оболочки.
Голушко С. К., Семисалов Б. В. Численное моделирование деформирования анизогридных конструкций с применением высокоточных схем без насыщения. Математическое моделирование и численные методы, 2015, №2 (6), c. 23-45