62-752 Modeling loads on compound elastic shells by means of the initial approximation method

Dubrovin V. M. (Bauman Moscow State Technical University), Butina T. A. (Bauman Moscow State Technical University)

EXTERNAL SHELL, INTERNAL SHELL, COMPOUND SHELL, BENDING MOMENT, FLEXURAL RIGIDITY, TRANSFER MATRIX, CONCENTRATED LOAD MATRIX


doi: 10.18698/2309-3684-2017-2-2838


The article presents a method for computing loads (such as strain or torque) on a compound shell consisting of elastically linked external and internal shells for the case when the external shell is subjected to transverse loading (bending moment, shear forces and distributed inertial loads). To demonstrate the application of our method, we investigated the effect the rigidity properties of the external shell have on the internal shell loading.


[1] Belonosov S.M. Matematicheskoe modelirovanie ravnovesnykh uprugikh tonkikh obolochek [Mathematical modeling of elastic thin shells in equilibrium states].Moscow, Nauka Publ., 1993, 158 p.
[2] Zhilin P.A. Osnovy teorii obolochek [Foundations of shell theory]. St. Petersburg, Peter the Great St. Petersburg Polytechnic University Publ., 2006, 306 p.
[3] Rabotnov Yu.N. Problemy mekhaniki deformiruemogo tverdogo tela. Izbrannye trudy [Problems of deformable solid mechanics. Selected works]. Moscow, Nauka Publ., 1991, 194 p.
[4] Okopnyy Yu.A., Rodin V.P., Charkov I.P. Mekhanika materialov i konstruktsiy [Mechanics of materials and structures]. Moscow, Mashinostroenie Publ., 2001, 407 p.
[5] Vorovich I.I. Matematicheskie problemy nelineynoy teorii pologikh obolochek [Mathematical problems of non-linear flat shell theory]. Moscow, Nauka Publ.,1989, 373 p.
[6] Agamirov V.L. Dinamicheskie zadachi nelineynoy teorii obolochek [Dynamic problems of non-linear shell theory]. Moscow, Nauka Publ., 1990, 269 p.
[7] Bakulin V.N. Dinamicheskie zadachi nelineynoy teorii mnogosloynykh obolochek [Dynamic problems of non-linear theory of multilayered shells]. Moscow, Nauka Publ., 1998, 462 p.
[8] Ivovich V.A. Perekhodnye matritsy v dinamike uprugikh sistem [Transfer matrices in dynamics of elastic systems]. Moscow, Mashinostroenie Publ., 1969, 197 p.
[9] Dimitrienko Yu.I. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy. V 2 tomakh. Tom 2. [Universal laws of continuum mechanics and electrodynamics. In 2 vols. Vol. 2]. Moscow, Bauman Moscow State Technical University Publ., 2011, 560 p.
[10] Dimitrienko Yu.I. Mekhanika sploshnoy sredy. V 4 tomakh. Tom 1. Tenzornyy analiz [Continuum mechanics. In 4 vols. Vol. 1. Tensor calculus]. Moscow, Bauman Moscow State Technical University Publ., 2010, 456 p.
[11] Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredy [Non-linear continuum mechanics]. Moscow, State Publishing House for Physical and Mathematical Literature, 2009, 624 p.
[12] Dubrovin V.M., Butina T.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation , 2013, no. 9 (21). DOI 10.18698/2308-6033-2013-9-957
[13] Butina T.A., Dubrovin V.M. Vestnik MGTU im. N.E. Baumana. Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Series Natural Sciences , 201Маthematical Modeling and Coтputational Methods, 2017, №1 (13), pp. 91-1012, pp. 127–133.
[14] Bushuev A.Yu., Yakovlev D.O. Vestnik MGTU im. N.E. Baumana. Ser Estestvennye nauki. Spets. vyp. “Matematicheskoe modelirovanie” — Herald of the Bauman Moscow State Technical University. Series Natural Sciences. Special edition on mathematical modelling, 2011, pp. 66–69.


Dubrovin V.M., Butina T.A. Modeling loads on compound elastic shells by means of the initial approximation method. Маthematical Modeling and Coтputational Methods, 2017, №2 (14), pp. 28-38



Download article

Количество скачиваний: 601