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Моделирование нагрузок на составные упругие 
оболочки методом начального приближения 

© В.М. Дубровин, Т.А. Бутина 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 
 
Предложен метод расчета нагрузок (усилий, моментов) на составную оболочку, 
состоящую из внешней и внутренней оболочек, соединенных упругими связями, 
в случае когда внешняя оболочка находится под воздействием поперечной нагрузки 
(изгибающего момента, перерезывающих сил и распределенной инерционной 
нагрузки). В качестве примера использования метода исследовано влияние жест-
костных характеристик внешней оболочки на нагружение внутренней оболочки. 
 
Ключевые слова: внешняя оболочка, внутренняя оболочка, составная оболочка, из-
гибающий момент, изгибная жесткость, передаточная матрица, матрица сосре-
доточенных нагрузок 

 
Введение. В настоящей статье рассматривается составная обо-

лочка в случае, когда цилиндрическая оболочка переменной жестко-
сти и массы с помощью ряда дискретных упругих опор закреплена 
в другой цилиндрической оболочке. Такая конструктивная компози-
ция присутствует в различных технических системах: в магистраль-
ных трубопроводах, железнодорожном транспорте, авиационной 
технике, ракетостроении, рефрижераторах и др. Для оценки внутрен-
них сил и моментов в конструкции составной оболочки можно ис-
пользовать методы строительной механики, основанные на общей 
теории оболочек [1–7]. Однако в рассматриваемом случае с учетом 
сложности задачи более продуктивным с точки зрения временных за-
трат и простоты получения результата является метод начальных па-
раметров. Этот метод для простых стержневых систем был предло-
жен в работе [8]. В настоящей работе метод начальных параметров 
обобщен на случай сложной конструкции, которой является состав-
ная цилиндрическая оболочка. Данный метод позволяет получить 
оценку изгибающих моментов и перерезывающих сил, действующих 
как на внешнюю, так и на внутреннюю оболочку, если на внешнюю 
оболочку действует система нагрузок, приводящая ее в движение. 
При решении задачи было исследовано влияние проектных парамет-
ров на нагружение внутренней оболочки.  

Математическая модель для расчета нагрузок на составную 
оболочку. Предположим, что цилиндрическая оболочка переменной 
жесткости и массы закреплена в другой цилиндрической оболочке 
с помощью ряда дискретных упругих опор. На внешнюю оболочку 
действует система сосредоточенных сил и моментов, приводящая ее 
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в движение, что обуславливает нагружение оболочки инерционными 
усилиями.  

При решении задачи исследовалось влияние на нагружение внут-
ренней оболочки жесткости внешней оболочки, соотношения жестко-
стей обеих оболочек, числа и жесткостных характеристик упругих свя-
зей между оболочками при заданном уровне воздействия на внешнюю 
оболочку.  

Разобьем оболочки на участки с постоянными по длине массовы-
ми и жесткостными характеристиками согласно методу начальных 
параметров. Выделим участки малой длины ,iy  на которых дей-

ствуют сосредоточенные нагрузки — реакции упругих связей между 
оболочками. Для участков, на которых отсутствуют сосредоточенные 
нагрузки, уравнения равновесия элемента оболочки, выделенного се-
чениями, перпендикулярными оси оболочки, имеют вид [7–12] 
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Здесь ,iy  ,i  ,iM  iQ  — прогиб, угол поворота, изгибающий момент 

и перерезывающая сила в i-м сечении оболочек; 
iyn  — поперечная 

перегрузка в i-м сечении; n  — угловая перегрузка; * ,KjM  *
KjQ  — со-

средоточенные момент и сила, действующие на внешнюю оболочку; 
,il  ,iG  ,iE  iJ  — длина, масса и погонная изгибная жесткость i-го 

участка; 0J  — момент инерции составной оболочки; ,jx  x  — коор-

динаты j-го сечения и центра масс составной оболочки; g  — ускоре-
ние свободного падения. 

Уравнения (1) справедливы как для внутренней, так и внешней 
оболочки.  

В векторно-матричной форме уравнения (1) имеют вид 

1 .i i iA    

Здесь  1 ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1) ( 1)1 1
Т

i p i p i p i p i k i k i k i k iy M Q y M Q             — мат-

рица параметров в   -м1i  сечении; iA  — передаточная матрица i-го 

сечения;  1 1
Т

i pi pi pi pi ki ki ki kiy M Q y M Q     — матрица параметров в i-м 
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Для участков, имеющих в своем составе сосредоточенные 
нагрузки (в местах постановки упругих связей между оболочками 
либо в местах передачи на внешнюю оболочку) справедливы следу-
ющие соотношения: 
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где ,piC  iC  — линейная и угловая жесткость i-й поперечной связи 

между оболочками; kiC  — жесткость упругой опоры на K-м участке; 
* ,piQ  * ,kiQ  * ,piM  *

kiM  — внешние сосредоточенные силы и моменты, 

действующие на оболочку.  
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слева (при условии, что отсчет координат ведется от левого конца 
оболочки). В векторно-матричной форме уравнения (2) можно запи-

сать как ,i i iB    где iB  — матрица сосредоточенных нагрузок, 

определяемая по формуле 
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Для определения матрицы начальных параметров используются 
граничные условия на концах оболочки, соответствующие условиям 
их закрепления [9–14]: на левом конце    0 0 0,p ky y    0p   

 0 0;k    на правом конце     0,p ky l y l       0p kl l     

(где l  — длина оболочки). При этом получается замкнутая система, 
допускающая однозначное решение. Так могут быть определены из-
гибающие моменты и перерезывающие силы в любом сечении обо-
лочки. 

Анализ влияния проектных параметров составной оболочки 
на нагружение внутренней оболочки. Используя предложенный 
метод, оценим влияние проектных параметров составной оболочки 
на нагружение внутренней оболочки.  

В качестве проектных параметров выбраны число упругих опор, 
упругие характеристики опор, изгибная жесткость внешней и внут-
ренней оболочек. Исходными данными при этом являются:  

 линейная жесткость 70,5 10iC    кг/м;  

 угловая жесткость опоры 1710С   кг/рад; 

 изгибная погонная жесткость внутренней оболочки рEI   
11 1110 19 10    кг·см2; 
 изгибная погонная жесткость внешней оболочки kEI   

123,5 10   кг·см2; 

 погонная масса внутренней оболочки 0,5 6,0рG    т/м; 

 погонная масса внешней оболочки 10kG   т/м. 

Результаты расчета изгибающего момента изгM  по длине внут-

ренней оболочки представлены в зависимости от числа упругих опор 
(рис. 1), жесткости упругих опор (рис. 2), изгибной жесткости внеш-
ней (рис. 3) и внутренней (рис. 4) оболочек, сочетания изгибных 
жесткостей внутренней и внешней оболочек (рис. 5). 

По данным представленных графиков (см. рис. 1), число упругих 
опор существенно влияет на величину изг .M  Однако увеличение чис-

ла опор не всегда дает одинаковый эффект с точки зрения снижения 
нагрузок на оболочку. Так, в рассматриваемом случае существенное 
снижение величины изгибающего момента достигается при увеличе-
нии числа опор с двух до четырех. Дальнейшее же увеличение дает 
сравнительно малый эффект. Учитывая, что постановка дополни-
тельных опор приведет к усложнению конструкции, можно утвер-
ждать, что увеличение числа опор целесообразно лишь до опреде-
ленного предела — в рассматриваемом случае это число равно 
четырем. Таким образом, для каждого конкретного случая существу-
ет оптимальное число опор.  
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Рис. 1. Изменение изгибающего момента 
изг

M  по длине внутренней оболочки 

для двух (1), трех (2), четырех (3), пяти (4) и шести (5) опор 

 

Рис. 2. Изменение изгибающего момента 
изг

M  по длине внутренней оболочки 

для различных жесткостей опор: 

1 — 
1 3 4

,C C C C    
2

/ 2;C C  2 — 
1 4
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2 4
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1 4

,C C C   

2 3
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1 4
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2 4
5C C C   
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Рис. 3. Изменение изгибающего момента 
изг

M  по длине внутренней оболочки 

для изгибных жесткостей внешней оболочки, равных 
k

EI  (1), 5
k

EI  (2), 10
k

EI  (3) 

 

Рис. 4. Изменение изгибающего момента 
изг

M  по длине внутренней оболочки 

для изгибных жесткостей внутренней оболочки, равных 
p

EI  (1), 2
p

EI  (2), 3
p

EI  (3), 

5
p

EI  (4) 
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Рис. 5. Изменение изгибающего момента 
изг

M  по длине внутренней оболочки 

для сочетаний изгибных жесткостей внутренней и внешней оболочек: 

1 — 2 ;
p

EI  5 ;
k

EI  2 — 3 ;
p

EI  10
k

EI  

 
Еще один существенный фактор, влияющий на нагружения внут-

ренней оболочки, — это характеристики упругих опор. Как следует 
из полученных результатов (см. рис. 2), для четырехопорной схемы 
при жесткости средних опор на порядок больше жесткости крайних 
опор максимальный изгибающий момент изгM  на 30 % ниже макси-

мального изгибающего момента при жесткости средних опор, в два 
раза меньшей жесткости крайних опор. Из этого следует, что путем 
выбора жесткостей опор можно обеспечить оптимальный режим 
нагружения оболочки. 

Кроме того, на нагружения внутренней оболочки влияет изгибная 
жесткость внешней и внутренней оболочек. Этот фактор имеет суще-
ственное значение и для величины изгибающего момента (см. рис. 3–5). 
Изменяя изгибную жесткость оболочек, можно не только уменьшить 
максимальное значение изгибающего момента, но и изменить его ме-
сто приложения, что дает возможность перераспределять нагрузку по 
длине оболочки. Следовательно, в каждом конкретном случае есть 
оптимальное соотношение между изгибными жесткостями внутрен-
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ней и внешней оболочки с точки зрения нагружения внутренней обо-
лочки.  

Таким образом, соответствующим выбором проектных парамет-
ров составной оболочки можно обеспечить оптимальные условия ее 
работы с точки зрения минимизации нагрузки, действующей на обо-
лочку.  

Заключение. Метод начальных параметров, предложенный в 
настоящей статье, позволяет при воздействии на внешнюю оболочку 
оценить нагрузки, действующие на внешнюю и внутреннюю оболоч-
ки, образующие составную оболочку. Было установлено, что число 
упругих опор существенно влияет на величину изгибающего момен-
та. Варьируя это число, можно обеспечить оптимальное условие 
нагружения внутренней оболочки.  

Нагрузка на внутреннюю оболочку существенно зависит от жест-
костных характеристик внешней оболочки. При этом увеличение 
жесткости внешней оболочки может снижать нагрузку на отдельных 
участках внутренней оболочки и одновременно увеличивать ее на 
других участках, что позволяет оптимально выбирать характеристики 
внешней оболочки для обеспечения равнопрочности внутренней обо-
лочки по всей ее длине. 
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Modeling loads on compound elastic shells 
by means of the initial approximation method 

© V.M. Dubrovin, T.A. Butina 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 
The article presents a method for computing loads (such as strain or torque) on a com-
pound shell consisting of elastically linked external and internal shells for the case when 
the external shell is subjected to transverse loading (bending moment, shear forces and 
distributed inertial loads). To demonstrate the application of our method, we investigated 
the effect the rigidity properties of the external shell have on the internal shell loading. 
 
Keywords: external shell, internal shell, compound shell, bending moment, flexural rigid-
ity, transfer matrix, concentrated load matrix 
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