Рубрика: "01.02.00 Механика"



539.3:621.01 Численное моделирование процессов нелинейного деформирования тонких упругих оболочек

Гаврюшин С. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-115130


Излагаются теоретические основы методики и алгоритмы, разработанные для анализа устойчивости и закритического поведения тонких упругих оболочек. Обсуждается задача численного анализа процесса нелинейного деформирования сферического купола, нагруженного равномерным внешним давлением. Описывается алгоритм численного анализа, основанный на использовании метода продолжения решения по параметру в сочетании с приемом смены подпространства управляющих параметров. Эффективность предложенного алгоритма иллюстрируется примерами расчетов.


Гаврюшин С. С. Численное моделирование процессов нелинейного деформирования тонких упругих оболочек. Математическое моделирование и численные методы, 2014, №1 (1), c. 115-130



629.1.028 Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований

Жилейкин М. М. (МГТУ им.Н.Э.Баумана), Сарач Е. Б. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-6674


В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. Методами экспериментальных исследований проведена проверка адекватности математической модели движения МКМ с учетом податливости несущей системы на кручение. Проведенное сравнение расчетных и экспериментальных данных показывает хорошую сходимость результатов.


Жилейкин М. М., Сарач Е. Б. Проверка адекватности математической модели движения многоосной колесной машины с податливой на кручение несущей системой методами экспериментальных исследований. Математическое моделирование и численные методы, 2015, №4 (8), c. 66-74



537.8+519.63 Моделирование электромагнитных эффектов в сложных конструкциях при воздействии импульсных излучений

Березин А. В. (Институт прикладной математики им. М.В. Келдыша РАН), Жуков Д. А., Жуковский М. Е. (Институт прикладной математики им. М.В. Келдыша РАН), Конюков В. В., Крайнюков В. И., Марков М. Б. (Институт прикладной математики им. М.В. Келдыша РАН), Помазан Ю. В. (Cекция прикладных проблем при Президиуме), Потапенко А. И. (12-й Центральный научно-исследовательский институт МО РФ)


doi: 10.18698/2309-3684-2015-2-5872


Представлена математическая модель переноса фотонов и генерации ими вто-ричных электромагнитных полей в конструкции сложной геометрической формы и упаковки. Приведен эскизный чертеж модельной конструкции изделия. Пред-ставлены результаты расчетов потока фотонов в различных элементах конст-рукции модельного изделия. Показано, что пакет материалов корпуса изделия может резко ослаблять поток фотонов, рассеивая не только мягкие, но и жест-кие кванты, причем интенсивность поглощения имеет ярко выраженные макси-мумы. В газовой среде внутри изделия образуется объемный заряд и электроста-тическое поле. При этом в малой пространственной области внутри корпуса изделия электрическое поле может достигать большой амплитуды


Березин А. В., Жуков Д. А., Жуковский М. Е., Конюков В. В., Крайнюков В. И., Марков М. Б., Помазан Ю. В., Потапенко А. И. Моделирование электромагнитных эффектов в сложных конструкциях при воздействии импульсных излучений. Математическое моделирование и численные методы, 2015, №2 (6), c. 58-72



532.527:551.465 Гидродинамические реакции в модели циркуляционного обтекания трубопровода придонным морским течением

Владимиров И. Ю. (Институт океанологии им. П.П. Ширшова РАН), Корчагин Н. Н. (Институт океанологии им. П.П. Ширшова РАН), Савин А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-4157


Получено аналитическое решение модельной задачи о волновом воздействии стратифицированного течения на подводный трубопровод в случае циркуляционного обтекания. Проведены численные расчеты гидродинамических реакций для реальных морских условий. Найдены значения параметров потока, при которых волновое сопротивление и подъемная сила трубопровода достигают максимумов.


Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Гидродинамические реакции в модели циркуляционного обтекания трубопровода придонным морским течением. Математическое моделирование и численные методы, 2015, №3 (7), c. 41-57



539.3 Математическое моделирование процесса взрывного нагружения менисковой облицовки

Асмоловский Н. А. (МГТУ им.Н.Э.Баумана), Баскаков В. Д. (МГТУ им.Н.Э.Баумана), Боярская Р. В. (МГТУ им.Н.Э.Баумана), Зарубина О. В. (МГТУ им.Н.Э.Баумана), Тарасов В. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-5267


Рассмотрена задача математического моделирования процесса формирования высокоскоростного элемента из менисковой облицовки методом конечных элементов с учетом погрешностей геометрии взрывного устройства. Приведена подробная расчетная схема процесса. Представлен обзор математической модели и численных алгоритмов. Проведена оценка влияния типа конечного элемента на конфигурацию формируемого высокоскоростного элемента. Практическое применение предлагаемого подхода показано на примере анализа влияния неравномерности толщины и несоосности сферических поверхностей менисковой облицовки на кинематические и геометрические параметры формируемого высокоскоростного элемента


Асмоловский Н. А., Баскаков В. Д., Боярская Р. В., Зарубина О. В., Тарасов В. А. Математическое моделирование процесса взрывного нагружения менисковой облицовки. Математическое моделирование и численные методы, 2016, №1 (9), c. 52-67



51-72:519.688 Моделирование фрактального композита и исследование его электрических характеристик

Корчагин С. А. (СГТУ имени Гагарина Ю.А.), Терин Д. В. (СГТУ имени Гагарина Ю.А.), Клинаев Ю. В. (СГТУ имени Гагарина Ю.А.)


doi: 10.18698/2309-3684-2017-1-2231


Рассмотрена модель слоистого иерархически построенного композита, структура которого имеет морфологию, подобную фрактальному образованию. Разработан алгоритм исследования взаимодействия переменного электрического поля с фрактальным композитом, а также программный комплекс, позволяющий осуществлять моделирование фрактальных характеристик исследуемого композита и производить расчеты электрических параметров композитной среды. Исследованы границы применения разработанной модели: максимальные и минимальные размеры композита, при которых проявляются фрактальные свойства. Изучены частотные зависимости диэлектрической проницаемости фрактального композита.
Результаты исследования могут быть использованы при конструировании материалов с заранее заданными электрофизическими параметрами и характеристиками, а также при разработке элементов и устройств, обладающих поглощающими и селективными свойствами.


Корчагин С. А., Терин Д. В., Клинаев Ю. В. Моделирование фрактального композита и исследование его электрических характеристик. Математическое моделирование и численные методы, 2017, №1 (13), c. 22-31



536.2 Эффективная теплопроводность композита в случае отклонений формы включений от шаровой

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Кувыркин Г. Н. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-317


На основе математической модели теплового взаимодействия включения и матрицы выполнена оценка влияния отклонения формы включений от шаровой на эффективный коэффициент теплопроводности композита и связанное с таким отклонением возможное возникновение анизотропии композита по отношению к свойству теплопроводности. С использованием двойственной вариационной формулировки стационарной задачи теплопроводности в неоднородном теле построены двусторонние оценки эффективных коэффициентов теплопроводности.


Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Эффективная теплопроводность композита в случае отклонений формы включений от шаровой. Математическое моделирование и численные методы, 2014, №4 (4), c. 3-17



629.1.028 Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой

Жилейкин М. М. (МГТУ им.Н.Э.Баумана), Сарач Е. Б. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-1740


В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. При этом их кинематические схемы также могут быть весьма разнообразны. Сбор требуемого объема информации для семейств автомобилей, различных по конструкции и эксплуатационным характеристикам, представляется неосуществимым. Провести полные аналитические исследования по определению соответствующих характеристик не представляется возможным. Эта задача с успехом может быть решена только с помощью моделирования.
Разработана математическая модель движения МКМ, особенностью которой является то, что скорость машины задается не принудительно, а формируется силами взаимодействия вращающихся колесных движителей с опорным основанием. Это позволяет получить высокую точность при моделировании реальных процессов движения МКМ по неровностям. Разработанная модель может быть применена для исследования различных законов управления подвеской многоосных колесных машин.


Жилейкин М. М., Сарач Е. Б. Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой. Математическое моделирование и численные методы, 2015, №3 (7), c. 17-40



533.6.011.5 Моделирование сверхзвукового обтекания затупленных конусов с учетом разрыва кривизны образующей тела

Булгаков В. Н. (МГТУ им.Н.Э.Баумана), Котенев В. П. (МГТУ им.Н.Э.Баумана), Сапожников Д. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-2-8193


Предложена аналитическая зависимость для расчета давления на поверхности затупленных конусов, обтекаемых сверхзвуковым потоком газа, с учетом разрыва кривизны образующей. Для определения свободных параметров зависимости применялись генетический алгоритм и каскадные методы оптимизации функционала метода наименьших квадратов. Полученные результаты даны в сравнении со строгим численным решением невязкой задачи. Сравнение показывает, что возможно использовать аналитическую формулу для распределения давления по поверхности в широком диапазоне чисел Маха при разных углах полураствора конуса. В отличие от известных работ предлагаемая зависимость позволяет учесть разрыв кривизны образующей в точке сопряжения сферы с конической поверхностью.


Булгаков В.Н., Котенев В.П., Сапожников Д.А. Моделирование сверхзвуково- го обтекания затупленных конусов с учетом разрыва кривизны образующей тела. Математическое моделирование и численные методы, 2017, No 2, с. 81–93.



<< 5