doi: 10.18698/2309-3684-2015-2-5872
The article describes a mathematical model of photon transport and generating the secondary electromagnetic fields in structures of complex geometry and package. A draft of the model design is given. The results of computing the photon flux in different elements of the model structure are demonstrated. It is shown that multiple-material stack-up of the enclosure can dramatically weaken the photon flux, scattering not only soft but hard photons as well. Intensity of absorption has pronounced maxima. There is space charge and the electrostatic field generated in the gas atmosphere inside the model. Electrostatic field can reach high amplitude in a small spatial domain inside the enclosure of the model.
[1] Akhiezer A.I., Berestetskiy V.B. Kvantovaya elektrodinamika [Quantum Electrodynamics]. Moscow, Nauka Publ., 1969.
[2] Mott N.F., Massey H.S.W. The Theory of Atomic Collisions. Oxford University Press, 1965, 878 p. [In Russian: Mott N., Massey G. Teoriya atomnykh stolknoveniy. Moscow, Mir Publ., 1969].
[3] Berezin A.V., Zhukov D.A., Zhukovskiy M.E., Konukov V.V., Krainukov V.I., Markov M.B., Pomazan Yu.V., Potapenko A.I. Superkompyuternoe modelirovanie vtorichnykh elektromagnitnykh effektov ot impulsnykh izlucheniy [Supercomputing the Secondary Electromagnetic Effects Caused by Pulse Radiation]. Proceeding of the 38th Academic reading on cosmonautics. Moscow, JSC (Open joint stock company) Military and industrial corporation “MIC “Mashinostroyenia, 2014.
[4] Case K.M., Zweifel P.F. Lineynaya teoriya perenosa [Linear Transport Theo-ry]. Moscow, Mir Publ., 1972.
[5] McDaniel E., Collision Processes in Ionized Gases. New York, 1964. [In Rus-sian: McDaniel I. Collision processes in ionized gases. Moscow, Mir Publ., 1967].
[6] Landau L.D., Lifshits Е.М. Teoriya polya [Field Theory]. Moscow, Nauka Publ., 1979.
[7] Courant R. Uravneniya s chastnymi proizvodnymi [Equations with Partial De-rivatives]. Moscow, Mir Publ., 1964
[8] Berezin A.V., Vorontsov A.S., Markov M.B., Parotkin S.V., Zakharov S.V. Numerical modeling of plasma generation in a hollow cathode triggered dis-charge. Mathem. Montisnigri, vol. 25 (2012) 51–64.
[9] Shilov G.Е. Matematicheskiy Analiz. Vtoroy Spetsialnyy Kurs [Calculus. Se-cond Special Course]. Moscow, MGU Publ., 1984.
[10] Markov М.B. Matematicheskoe modelirovanie – Mathrmatical modeling, 2009, no. 21, pp. 85–93.
[11] Hockney R., Eastwood J. Computer Simulation Using Particles. New York, McGraw-Hill, 1981.
[12] Zhukovskiy М.Е., Markov М.B. Matematicheskoe modelirovanie electromagnitnykh poley radiatsionnogo proiskhozhdeniya [Mathematical Modeling of Radiative Electromagnetic Field]. In: Entsiklopedita nizkotemperaturnoy plazmy. Seriya B [Encyclopedia Of Low-Temperature Plasma. Series B], vol. VII–1, part 2, pp. 628–652.
[13] Mikhaylov G.A., Voytishek A.V. Chislennoe statisticheskoe modelirovanie. Metody Monte Karlo [Numerical Statistical Modeling. Monte Carlo Meth-ods]. Moscow, Academiya Publ., 2006.
[14] Berezin A.V., Krukov А.А., Matematicheskoe modelirovanie – Mathrmatical modeling, 2011, no. 23, pp. 109–126.
[15] Zhukovskiy М.Е., Uskov R.V. Vychislitelnye metody i programmirovanie - Computing methods and programming, 2012, vol. 13, no.1, pp.189–197.
Berezin A., Zhukov D., Zhukovskiy M., Konukov V., Krainukov V., Markov M., Pomazan Y., Potapenko A. Modeling the electromagnetic effects in complex structures exposed to pulse radiation. Маthematical Modeling and Coтputational Methods, 2015, №2 (6), pp. 58-72
Количество скачиваний: 526