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Представлена математическая модель переноса фотонов и генерации ими вто-
ричных электромагнитных полей в конструкции сложной геометрической формы 
и упаковки. Приведен эскизный чертеж модельной конструкции изделия. Пред-
ставлены результаты расчетов потока фотонов в различных элементах конст-
рукции модельного изделия. Показано, что пакет материалов корпуса изделия 
может резко ослаблять поток фотонов, рассеивая не только мягкие, но и жест-
кие кванты, причем интенсивность поглощения имеет ярко выраженные макси-
мумы. В газовой среде внутри изделия образуется объемный заряд и электроста-
тическое поле. При этом в малой пространственной области внутри корпуса 
изделия электрическое поле может достигать большой амплитуды. 
 
Ключевые слова: перенос излучения, электромагнитное поле, радиационная элек-
тронная эмиссия. 

 
Введение. Исследование стойкости изделий ракетно-космической 

техники по отношению к проникающей радиации является актуальной 
проблемой. Отсутствие натурных испытаний и ограниченность воз-
можностей моделирующих установок приводит к необходимости ма-
тематического моделирования взаимодействия излучений с материа-
лами изделий на основе классических уравнений физики. Для 
реальных изделий это стало возможным с появлением параллельных 
суперкомпьютеров. 

Проникающее излучение при рассеянии в конструкционных мате-
риалах образует поток электронов отдачи [1] в непрерывном спектре. 
Электроны ионизируют конструкцию и эмитируются в окружающую 
среду, генерируя электромагнитное поле, воздействующее на аппара-
туру изделия. Ионизация материалов и энерговыделение являются ис-
точниками радиационного воздействия. Расчет характеристик радиа-
ционных и электромагнитных полей позволяет обосновать параметры 
нагружения элементов конструкции сложной геометрической формы в 
косвенных испытаниях.  
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Целью работы является применение суперкомпьютерного моде-
лирования для исследования защитных свойств корпуса изделия  
и определения вторичного электромагнитного поля. 

Физико-геометрическая модель представляет собой компьютер-
ный чертеж гетерогенной среды с кусочно-постоянными свойствами 
в формате DXF (Drawing Exchange Format), т. е. нумерованный спи-
сок слоев, ограниченных замкнутыми поверхностями. Каждому слою 
соответствует материал конструкции или газовая среда. Слоям моде-
ли приписаны физические свойства. Сечение  DXF-модели представ-
лено на рис. 1. Направление нормали к фронту потока фотонов пер-
пендикулярно оси изделия.  

 
Рис. 1. Сечение конструкции модельного изделия 

 
Основы математической модели. Фотоны образуют заряжен-

ные частицы при комптоновском рассеянии, фотопоглощении и об-
разовании электрон-позитронных пар в конструкционных материа-
лах. Электроны и позитроны генерируют тормозное излучение, 
испытывают ионизационное и упругое рассеяние, возбуждают моле-
кулы [2]. Позитроны, помимо этого, аннигилируют с испусканием 
фотонов [1]. Образование заряженных частиц сопровождается разде-
лением заряда и генерацией электромагнитного поля.  

Поток фотонов задается интенсивностью ( ), ,ph phQ Q t≡ r p  его 

образования в фазовом пространстве ( ) 3 3, = ×r p r p  координат 

( ), ,x y z=r  и импульсов ( ), , ;x y zp p p p= =p Ω  t  — время. Если дли-
на пробега нерассеянных фотонов превосходит расстояние между ис-
точником фотонов и изделием, то ионизацией воздуха и связанными 
с ней электромагнитными эффектами можно пренебречь. В этом слу-
чае рассматривается плоский поток фотонов с плоскости 0z =  [3]: 

( ) ( ) ( )( ) ( ) ( )2, ,ph ph ph zQ t N t S c p z= ε δ − δr p Ω e ,              (1) 

где ( )phN t  — число фотонов, испускаемое в единицу времени с еди-
ницы площади поверхности; ( )pε = ε  — энергия фотона; ze  — еди-

ничный орт оси z; ( )( ) 22phс S p pε π  — спектр фотонов, нормиро-
ванный в пространстве импульсов; с  — скорость света в вакууме. 
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Поля фотонов, электронов и позитронов описываются функциями 
распределения ( ), ,phf t r p , ( ), ,ef t r p  и ( ), ,pf t r p  в том же фазовом 
пространстве.  

Функция phf  представляется суммой tr sec
ph ph phf f f= +  распреде-

лений фотонов мгновенного и рассеянного излучений, причем [3]: 

( ) ( ) ( )0 0
2

0

1 exp , , , .
z

ph ph ph ph ph z
zf f N t S x y z dz
cp

    ′ ′≡ = − ε − σ ε δ −  
    

∫ Ω e  (2) 

Для остальных функций распределения справедливы уравнения [4, 5]: 

( ) ( )( ) ( )

( ) ( ) ( )( ) ( )

div ,

, , ;

sc
ph sc t sc

ph ph ph c coh ph

e p p
e an pbr br

f
c f c f c d f

t
v d f v d f

γγ

γ γ γ

∂
′ ′ ′+ + σ = σ + σ +

∂
′ ′ ′ ′ ′ ′+ σ + σ + σ

∫

∫ ∫

Ω p p p p

p p p p p p p p    (3) 

( ) [ ]( ) [ ]

( ) ( ) ( )( ) ( )

pdiv div , St

, , ;

te
e e e e br e

ee e e e
br e c pair phab

f f e f f vf
t

d v f c d fγ γ γ

∂  + − + + + σ = ∂
′ ′ ′ ′ ′ ′ ′= σ + σ + σ + σ∫ ∫

v E β H

p p p p p p p p   (4) 

( ) [ ]( )

( ) ( ) ( ) ( ) ( )

div div ,

, , ,

p
p p p p p

t t pp p
br an p p pair phbr

f
f e f St f

t
vf d v f c d fγ

∂
   + + + + +  ∂

′ ′ ′ ′ ′ ′ ′+ σ + σ = σ + σ∫ ∫

v E β H

p p p p p p p p    (5) 

где v  — скорость; c=β v ; ( ),t=E E r  и ( ),t=H H r  — напряжен-
ность электрического и магнитного поля соответственно. 

Макроскопические дифференциальные сечения в уравнениях  
(3)–(5) описывают образование: с

γγσ , e
с
γσ  — фотона и электрона  

при комптоновском рассеянии; сohσ  — фотона при когерентном рас-
сеянии; e

ab
γσ  — электрона при фотопоглощении; e

pair
γσ , p

pair
γσ  — элек-

трона и позитрона при рождении пары; e
br
γσ , p

br
γσ  — фотона при тор-

мозном рассеянии электрона и позитрона; p
an

γσ  — фотона при 
аннигиляции позитрона. Символы p  и ′p обозначают импульсы рас-
сеянной и падающей частицы соответственно. Макроскопические 
полные сечения описывают поглощение частиц за счет следующих 
процессов: t

abσ  — фотопоглощение фотона; t
cohσ  — когерентное рас-

сеяние фотона; t
pairσ  — образование электрон-позитронной пары; 

t
brσ  — тормозное излучение; t

anσ  — аннигиляция позитрона; 
t t t t
ph c coh pairσ = σ + σ + σ . 
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Интегралы столкновений электронов [ ]Ste ef  и позитронов 

St p pf    в (4, 5) имеют вид 

[ ] ( ) ( ) ( ) ( )( ) ( )St , , 2 , , ;ee ee ee pe
e e e e el ex ion ion ef vf d vf′ ′ ′ ′ ′ ′= σ − σ + σ + σ + σ∫ p p p p p p p p p p  

( ) ( ) ( )( ) ( )St , , , ,pp pp pp
p p p p ex ion pelf vf d vf  ′ ′ ′ ′ ′= σ − σ + σ + σ  ∫ p p p p p p p p  

где elσ  — дифференциальное сечение упругого рассеяния; exσ  — 
дифференциальное сечение возбуждения молекул газа; ionσ  — диф-
ференциальное сечение ударной ионизации. Совпадение верхних ин-
дексов в дифференциальных сечениях показывает, что тип заряжен-
ной частицы при рассеянии не изменяется. Исключение составляет 
сечение ( ),pe

ion ′σ p p  образования электрона при ионизационном рас-

сеянии позитрона. Величины eσ  и pσ  определяют полные сечения 
рассеяния электрона и позитрона за счет учтенных в интегралах 

[ ]Ste ef , St p pf    столкновений. 
Совместно с (3) – (5) рассматриваются уравнения Максвелла [6]: 

( )4rot
c t c
ε ∂ π

= + σ +
∂
EH E j ; 1rot

c t
∂

= −
∂
HΕ ,                   (6) 

где ( )p ee d f f= −∫∫∫j v p  — плотность тока заряженных частиц; 

( )ε = ε r  и ( )σ = σ r  — соответственно диэлектрическая проницае-
мость и проводимость конструкции в невозмущенном состоянии. 
Однородные начальные условия доопределяют задачу Коши [7] для 
уравнений (3)−(6). 

Суперкомпьютерное моделирование полей излучений требует 
применения эффективно распараллеливаемых алгоритмов решения 
кинетических уравнений. Поэтому в качестве базовых подходов вы-
браны методы частиц и Монте-Карло. Они сводят решения уравне-
ний сплошной среды к моделированию динамических систем, что 
упрощает распределение вычислений при их параллельном выполне-
нии. Уравнения (3)−(5) имеют одинаковую структуру, что позволяет 
рассмотреть алгоритм решения на примере уравнений 

( ) [ ]( )
( ) ( ) ( )

div div

, .

tf f e f vf
t

Q t d v f

∂  + − + σ = ∂
′ ′ ′ ′= + σ∫

v E + β, H

r,p p p,p p

r p

                 (7) 

В уравнениях (7) функция ( ), ,f t r p  описывает распределение частиц 
одного типа: фотонов, электронов или позитронов. Источник 

( ), ,Q Q t= r p  включает слагаемые, которые линейно зависят от функ- 
ций распределения других частиц. 
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Уравнения (7) эквивалентны интегральным уравнениям Фред-
гольма второго рода: 

( ) ( ) ( )

( ) ( )
0

, , , , , ,

exp ,

t

t
t s s s

f d d d Q d v f t

dt v
τ

 ′ ′ ′ ′= τ τ + σ × 

  ′′× − σ δ − δ − 
  

∫ ∫ ∫ ∫

∫

ξ η ξ η p ξ η p ξ p

r r p p            (8) 

где функции ( ), , ,s s t= τr r ξ η , ( ), , ,s s t= τp p ξ η  определяются уравне-

ниями движения s sd dt =r v , ( ) ( )( ), , ,s s s sd dt e t t = +  p E r β H r  с на-

чальными условиями s
t=τ

=r ξ , s
t=τ

=p η . 

Пусть функции ( ), ,f f t≡ r p , ( ),t=E E r , ( ),t=H H r  являются 
решением поставленной выше задачи Коши в момент времени .t  Рас-
смотрим эти функции в момент времени t t+ ∆  [8]: 

( ) ( ) ( ) ( )

( ) ( )

( ) ( ) ( )

, , , ,

, , , ,

exp , .

t t

t

t t
t s s s s s

f t t d d d Q f t

d v f

dt p v

+∆

+∆

τ

+ ∆ = τ τ + τ δ τ − +

′ ′ ′ ′+ σ τ ×
  ′ ′ ′′× − σ δ − δ − 
  

∫ ∫ ∫

∫

∫

ξ η ξ η ξ η

p ξ η p ξ p

r r r p p           (9) 

Первое слагаемое в правой части (9) описывает рождение частиц 
на отрезке времени ( ), ,t t t+ ∆  их распространение и рассеяние. Вто-
рое слагаемое описывает распространение и рассеяние всех частиц, 
образовавшихся к моменту времени .t  Третье слагаемое описывает 
распространение и рассеяние частиц, образовавшихся на отрезке 
времени ( ),t t t+ ∆  за счет рассеяния. 

Рассмотрим приближение однократного рассеяния частиц за шаг 
[8] по времени :t∆  

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )1 1

exp ,

, , , ,

, , , , .

t t t t
t s s s s

t

s

t

t t

f t t d d d dt p v

Q f t t

d d v f

+∆ +∆

τ

−∆

  ′ ′ ′′+ ∆ ≈ τ − σ δ − × 
  

× δ − τ + τ δ τ − + δ τ − ×


′ ′ ′ ′× τ σ τ 



∫ ∫ ∫ ∫

∫ ∫

ξ η r r r

p p ξ η ξ η

p ξ η p ξ p   (10) 
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Первое и второе слагаемые в правой части (9) и (10) совпадают. 
Третье слагаемое описывает распространение и рассеяние на отрезке 
времени ( ),t t t+ ∆ частиц, образовавшихся на отрезке ( ),t t t− ∆  за 
счет рассеяния. Принимается, что все акты рассеяния произошли  
в момент времени .t  

Распределения (9) и (10), так же как и их разность f∆ , являются 
финитными обобщенными функциями [9], определенными на беско-
нечно дифференцируемых функциях ( ),ϕ = ϕ r p  с общим носителем 

в 3 3×r p  . Переменная t является параметром. Действие обобщен-
ной функции f∆  на элемент основного пространства определяется 
следующим образом: 

( ) ( )( ){ }
( )) ( ) ( )

( )( ){ }
( ) ( )( ) ( ) ( )

1

1

, exp ( (

, , , ), , , , , , , ,

exp

, , , , , , , , , , , .

t t t t t s s

t
s

t t t t s
t

t t
s s

f d d d dt v p t t

t t t d v f

d d d dt v p t

t t t t t t d v f

+∆
+∆

τ

+∆

−∆

′′ ′′ϕ ∆ = τ − σ ϕ +

′ ′ ′ ′+∆ τ + ∆ τ × σ τ −

′′ ′′− τ − σ ×

′ ′ ′ ′× ϕ + ∆ + ∆ σ τ

∫ ∫ ∫ ∫

∫

∫ ∫ ∫ ∫

∫

ξ η r

ξ η p ξ η p ξ η p ξ p

ξ η

r ξ η p ξ η p ξ η p ξ p

 

Отсюда можно показать, что (10) совпадает с (9) с первым поряд-
ком точности по параметру .t v tσ ∆  Условие 1t v tσ ∆   для заряжен-
ных частиц является слишком жестким, поэтому при рассмотрении 
упругого и ионизационного рассеяния заряженных частиц с малой 
передачей импульса на практике применяется приближение одно-
родного рассеяния на траектории [10]. 

Вычисление действий обобщенных функций, выражающих плот-
ность тока, энерговыделение, поток эмиссии, сводится к решению 
уравнений движения частиц. Применяется сочетание [8] метода час-
тиц [11] для решения уравнений движения между столкновениями и 
статистического описания столкновений. В конструкционных мате-
риалах используется квазистационарное приближение [12], сводящее 
алгоритм к методу Монте-Карло [13]. Уравнения Максвелла решают-
ся с помощью полностью консервативной разностной схемы [14]. 

Программное обеспечение модели реализовано на гетерогенном 
вычислительном кластере ГВК К-100 [15]. Этот суперкомпьютер по-
строен специально для задач рассматриваемого типа при поддержке 
ОАО «ВПК «НПО машиностроения» и эксплуатируется в ИПМ  

63 



А.В. Березин, Д.А. Жуков, М.Е. Жуковский, В.В. Конюков, В.И. Крайнюков и др. 

им. М.В. Келдыша РАН. Вычислительные узлы ГВК К-100 содержат 
помимо центральных процессоров высокопроизводительные графиче-
ские ускорители выполнения арифметических операций. Это позволя-
ет резко ускорить вычисления распределений фотонов и электронов в 
конструкционных материалах, требующие подавляющей доли процес-
сорного времени при реализации рассматриваемой модели. 

Защитные свойства корпуса полезной нагрузки. Рассчитанные 
спектры фотонов на поверхностях внешнего корпуса модельного из-
делия и корпуса его внутреннего отсека показаны на рис. 2. На этом  
и последующих рисунках представлены нормированные результаты 
расчета в тех точках поверхностей изделия, корпусов отсеков и эле-
ментов внутренней компоновки, которых фронт фотонов касается  
в первую очередь. Эти точки наиболее представительны для целей 
анализа защитных и эмиссионных свойств покрытий. 

 

Рис. 2. Нормированные спектры рентгеновского излучения: 
а — падающего (единичная полная интенсивность); б — на внутренней по-
верхности корпуса изделия (общая интенсивность 4,46E–01); в — на внутрен- 

ней поверхности корпуса отсека (общая интенсивность 1,76E–04) 
 
На рис. 3 показаны спектры электронов эмиссии. 
Параметры потока электронов эмиссии на внутренней поверхно-

сти отсека изделия и внешних поверхностях элементов компоновки 
объемов представлены на рис. 4. 
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Рис. 3. Спектры электронов эмиссии корпуса изделия: 
а — на внутренней поверхности корпуса изделия (общая интенсивность 9,89E–05);  
б — на внешней поверхности корпуса изделия (общая интенсивность 8,77E–06) 
 
 

 

Рис. 4. Спектры электронов эмиссии внутри отсека и элементов  
компоновки изделия: 

а — спектр электронов эмиссии на внутренней поверхности отсека изделия (об-
щая  интенсивность  2,76E–08);  б — спектр  электронов  эмиссии на внешней по- 

верхности элементов компоновки изделия (общая интенсивность 5,79E–09) 

 
Распределения вторичного электромагнитного поля. На рис. 5 

выделена газовая среда внутри модельного изделия. На ее фоне пред-
ставлены линии уровня модуля напряженности электрической ком-
поненты внутреннего электромагнитного импульса в сечении плос-
костью х = 0 в последовательные моменты времени. 

На рис. 6−9 представлены линии уровня модуля напряженности 
электрического и магнитного полей под внешним корпусом модель-
ного изделия. Они показаны в сечениях плоскостями z = const и х = 0 
в последовательные моменты времени. 

65 



А.В. Березин, Д.А. Жуков, М.Е. Жуковский, В.В. Конюков, В.И. Крайнюков и др. 

   
 

а 

    

б 

Рис. 5. Линии уровня модуля напряженности электрического поля  
в последовательные моменты времени: 
а — сечение х = const; б — сечение z = const 

 

    

Рис. 6. Линии уровня модуля напряженности электрического поля под внешним 
корпусом модельного изделия в сечении плоскостью z = const в последовательные 

моменты времени 

    

Рис. 7. Линии уровня модуля напряженности электрического поля под внешним 
корпусом изделия в сечении х = 0 в последовательные моменты времени 
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Рис. 8. Линии уровня модуля напряженности магнитного поля под 
внешним  корпусом  изделия  в  сечении плоскостью х = const в после- 

довательные моменты времени 
 

   

Рис. 9. Линии уровня модуля напряженности магнитного поля под 
внешним корпусом изделия в сечении плоскостью z = const в последо- 

вательные моменты времени 
 
Заключение. Математическая модель переноса частиц примене-

на для исследования защитных свойств и вторичных электромагнит-
ных эффектов в различных конструкциях, в том числе сложной гео-
метрической формы и компоновки. 

Расчеты переноса фотонов и генерации электронов отдачи в мо-
дельном изделии и элементах его внутренней компоновки показали, 
что в зависимости от выбранного пакета материалов корпуса интен-
сивность внешнего потока излучения может быть снижена на несколь-
ко порядков. В результате взаимодействия с материалами существенно 
рассеиваются не только мягкие, но и жесткие фотоны, причем интен-
сивность поглощения имеет ярко выраженные максимумы. 

Вычисление начальных распределений электронов эмиссии и ге-
нерируемых ими электромагнитных полей в рамках единого расчета 
стало возможным только с использованием суперкомпьютера с гете-
рогенной архитектурой. Использование графических плат более чем 
в 100 раз ускорило реализацию метода Монте-Карло. В результате 
время вычисления начальных распределений электронов эмиссии 
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резко снизилось и стало сопоставимым с расчетом электромагнитных 
полей. 

Расчеты параметров внутреннего электромагнитного импульса в 
объемах модельного изделия показали, что скорость нарастания элек-
трического поля определяется фронтом проникающего излучения. Да-
лее в течение длительного времени происходит спад. Длительность 
спада обусловлена следующим фактором. Электроны эмиссии теряют 
энергию при ионизационном рассеянии в плотной газовой среде внут-
ри отсеков. После остановки они образуют в газовой среде объемный 
заряд, который стекает на положительно заряженные поверхности за 
счет тока радиационной проводимости. Характерная скорость дрейфа 
заряженных частиц, обусловливающих проводимость, в электриче-
ском поле невысока. На фоне спада электрического поля наблюдаются 
слабые высокочастотные колебания с длительностью, определяемой 
частотой собственных мод полости объемов. Влияние электромагнит-
ного поля на электроны эмиссии незначительно. 

Расчеты параметров внутреннего электромагнитного импульса под 
внешней поверхностью изделия и токов наводок показали, что элек-
трическое поле достигает больших значений. Форма импульса повто-
ряет временнỳю зависимость проникающего излучения. Электриче-
ское поле развивается в основном вблизи поверхностей, эмитирующих 
электроны. На небольших расстояниях от поверхностей поле резко 
спадает. Большие амплитуды и быстрый спад электрического поля  
с удалением от поверхностей обусловлены двумя обстоятельствами. 
Во-первых, в пространстве между корпусом внутреннего макета изде-
лия и внешним кожухом давление воздушной среды настолько мало, 
что электроны эмиссии не успевают претерпевать ионизационное рас-
сеяние. Во-вторых, интенсивность потока электронов настолько вели-
ка, что частота плазменных колебаний превосходит частоту столкно-
вений. Электроны быстро теряют энергию в электрическом поле  
и возвращаются на поверхность эмиссии.  
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Modeling the electromagnetic effects in complex structures 

exposed to pulse radiation 
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The article describes a mathematical model of photon transport and generating the second-
ary electromagnetic fields in structures of complex geometry and package. A draft of the 
model design is given. The results of computing the photon flux in different elements of the 
model structure are demonstrated. It is shown that multiple-material stack-up of the enclo-
sure can dramatically weaken the photon flux, scattering not only soft but hard photons as 
well. Intensity of absorption has pronounced maxima. There is space charge and the elec-
trostatic field generated in the gas atmosphere inside the model. Electrostatic field can 
reach high amplitude in a small spatial domain inside the enclosure of the model. 
 
Keywords: radiation transport, electromagnetic field, radiation electron emission. 
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