Рубрика: "01.02.00 Механика"
533.6.011.5 Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах
doi: 10.18698/2309-3684-2016-3-3352
Разработана модификация метода Польгаузена, позволяющая быстро и эффективно получить распределение теплового потока по поверхности затупленных тел. Проведены расчеты, их результаты приведены в сравнении с численным решением задачи в рамках уравнений Навье — Стокса.
Котенев В. П., Булгаков В. Н., Ожгибисова Ю. С. Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах. Математическое моделирование и численные методы, 2016, №3 (11), c. 33-52
doi: 10.18698/2309-3684-2017-2-8193
Предложена аналитическая зависимость для расчета давления на поверхности затупленных конусов, обтекаемых сверхзвуковым потоком газа, с учетом разрыва кривизны образующей. Для определения свободных параметров зависимости применялись генетический алгоритм и каскадные методы оптимизации функционала метода наименьших квадратов. Полученные результаты даны в сравнении со строгим численным решением невязкой задачи. Сравнение показывает, что возможно использовать аналитическую формулу для распределения давления по поверхности в широком диапазоне чисел Маха при разных углах полураствора конуса. В отличие от известных работ предлагаемая зависимость позволяет учесть разрыв кривизны образующей в точке сопряжения сферы с конической поверхностью.
Булгаков В.Н., Котенев В.П., Сапожников Д.А. Моделирование сверхзвуково- го обтекания затупленных конусов с учетом разрыва кривизны образующей тела. Математическое моделирование и численные методы, 2017, No 2, с. 81–93.
539.3 Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования
doi: 10.18698/2309-3684-2014-3-3954
Представлена математическая модель вязкоупругого поведения полиуретана СКУ-ПФЛ-100 для диапазона деформаций 0...30 % и умеренно высоких скоростей деформирования, не превышающих значения 10−1. Для определения вязкой составляющей деформации применена реологическая модель Бергстрема – Бойс. Связь напряжения с упругой составляющей деформации описана с помощью потенциала Арруды – Бойс. Для определения параметров модели использовались экспериментальные диаграммы сжатия полиуретана, полученные на машине Instron Electropuls 1000 при различных скоростях деформирования. Приведены значения параметров модели, найденные путем минимизации функции отклонений расчетных величин от результатов эксперимента. Показано, что в рассмотренном диапазоне деформаций и их скоростей модель позволяет описать поведение полиуретана с достаточной для практических целей точностью. Модель предназначена для расчета полиуретановых деталей амортизаторов, поглощающих аппаратов, буферов и других конструкций, испытывающих динамические нагрузки.
Белкин А. Е., Даштиев И. З., Лонкин Б. В. Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 39-54
doi: 10.18698/2309-3684-2016-3-323
Разработана многоуровневая модель для многомасштабного деформирования трехслойных (сэндвичевых) конструкций из полимерных композиционных материалов типа пластин с заполнителем на основе пенопласта, учитывающая микромеханические процессы деформирования и повреждаемости матрицы, армирующего наполнителя и пенопласта, а также макроскопические дефекты типа непропитки композитных обшивок. Проведено конечно-элементное моделирование напряженно-деформированного состояния, повреждаемости и разрушения трехслойных пластин с обшивками из гибридных композитов из углепластика, с различными размерами дефекта типа непропитки, при изгибе равномерным давлением. Установлены особенности процесса деформирования и повреждаемости данного типа композитных конструкций. Разработанная методика может быть применена для расчета деформирования, повреждаемости и разрушения трехслойных пластин из полимерных композиционных материалов, применяемых в различных отраслях промышленности: судостроении, авиастроении, ракетостроении.
Димитриенко Ю. И., Юрин Ю. В., Федонюк Н. Н. Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами. Математическое моделирование и численные методы, 2016, №3 (11), c. 3-23
doi: 10.18698/2309-3684-2015-2-7386
Предложен алгоритм идентификации параметров — постоянных времени турби-ны с использованием градиентного метода с настраиваемой моделью. Настраи-ваемая математическая модель имеет такую же структуру, как и объект иден-тификации. Критерий идентификации формируется на основе функции потерь, которая представляет собой невязку между левой и правой частями уравнения, описывающего настраиваемую модель. Тем самым удается избежать необходи-мости нахождения в явном виде решения нелинейного уравнения для настраивае-мой модели. Вместо выходного сигнала в модели используется сигнал, наблюдае-мый на выходе идентифицируемого объекта. Поскольку математические модели являются нелинейными, для решения задачи применены линеаризация Ньютона – Канторовича и аппарат матричных операторов. Рассмотрены особенности вы-числения вектора градиента, алгоритм идентификации и его организация. Приве-дены результаты идентификации двух постоянных времени для математической модели турбины ПТ-12/15-35/10М.
Корнюшин Ю. П., Егупов Н. Д., Корнюшин П. Ю. Идентификация параметров исполнительных устройств регуляторов паровой энергетической турбины с использованием аппарата матричных операторов. Математическое моделирование и численные методы, 2015, №2 (6), c. 73-86
doi: 10.18698/2309-3684-2015-1-6782
Предложена методика численного конечно-элементного решения задачи овализации, которую используют при экспериментальной отработке новых материалов для авиационной промышленности, в целях определения сопротивления деформированию элементов конструкций с наличием концентраторов напряжений, главным образом, соединительных элементов. Методика основана на трехмерном конечно-элементном решении задачи упругопластического деформирования пластин с отверстием при смятии и предназначена для сокращения экспериментальных исследований путей замены их на численные эксперименты. Используется модель малых упругопластических деформаций Ильюшина. Представлены результаты численного моделирования трехмерного напряженно-деформированного состояния упругопластических пластин при смятии, а также результаты экспериментальных исследований деформирования пластин из алюминиевого сплава 163. Показано, что результаты численного и экспериментального моделирования деформирования пластин при смятии достаточно хорошо совпадают.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Ерасов В. С., Яковлев Н. О. Численное моделирование и экпериментальное исследование деформирования упругопластических пластин при смятии. Математическое моделирование и численные методы, 2015, №1 (5), c. 67-82
doi: 10.18698/2309-3684-2014-1-1835
Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).
Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35
532.28 Моделирование волнового воздействия стратифицированного течения на подводный трубопровод
doi: 10.18698/2309-3684-2014-2-6276
Исследованы силовые воздействия на подводный трубопровод, связанные с генерацией волн на границе слоев придонного течения. Получено интегральное представление для силы воздействия со стороны водной среды на трубопровод, проведен его численный анализ. Выявлены условия обтекания, при которых происходит значительное увеличение гидродинамических реакций.
Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Моделирование волнового воздействия стратифицированного течения на подводный трубопровод. Математическое моделирование и численные методы, 2014, №2 (2), c. 62-76
51-72:519.688 Моделирование фрактального композита и исследование его электрических характеристик
doi: 10.18698/2309-3684-2017-1-2231
Рассмотрена модель слоистого иерархически построенного композита, структура которого имеет морфологию, подобную фрактальному образованию. Разработан алгоритм исследования взаимодействия переменного электрического поля с фрактальным композитом, а также программный комплекс, позволяющий осуществлять моделирование фрактальных характеристик исследуемого композита и производить расчеты электрических параметров композитной среды. Исследованы границы применения разработанной модели: максимальные и минимальные размеры композита, при которых проявляются фрактальные свойства. Изучены частотные зависимости диэлектрической проницаемости фрактального композита.
Результаты исследования могут быть использованы при конструировании материалов с заранее заданными электрофизическими параметрами и характеристиками, а также при разработке элементов и устройств, обладающих поглощающими и селективными свойствами.
Корчагин С. А., Терин Д. В., Клинаев Ю. В. Моделирование фрактального композита и исследование его электрических характеристик. Математическое моделирование и численные методы, 2017, №1 (13), c. 22-31