Рубрика: "01.02.00 Механика"



536.2 Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Пугачев О. В. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-5365


Многие используемые в технике теплозащитные материалы имеют пористую структуру. При интенсивном тепловом воздействии возникает необходимость учитывать перенос тепловой энергии путем излучения в порах таких материалов. Построена математическая модель, описывающая теплообмен излучением в шаровой полости, форму которой можно рассматривать как среднюю
статистическую по отношению к формам замкнутых пор в твердых телах. Для количественного анализа этой модели использован метод наименьших квадратов. Введен эквивалентный коэффициент теплопроводности условной сплошной среды, заполняющей пору, что позволяет рассматривать материал с пористой структурой как сплошное неоднородное твердое тело.


Зарубин В. С., Пугачев О. В., Савельева И. Ю. Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости. Математическое моделирование и численные методы, 2015, №4 (8), c. 53-65



539.3 Околорезонансные режимы подвижной нагрузки в плоской задаче теории упругости для полупространства с тонким покрытием

Каплунов Ю. Д. (Кильский университет), Облакова Т. В. (МГТУ им.Н.Э.Баумана), Приказчиков Д. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-5767


Рассмотрена плоская стационарная задача теории упругости о движении вертикальной сосредоточенной нагрузки вдоль поверхности упругого полупространства с тонким покрытием. В рамках длинноволновой асимптотической модели для волны Рэлея в случае упругого полупространства с покрытием исследуются режимы в приповерхностном слое при скоростях движения нагрузки, близких к резонансной скорости поверхностной волны. Получена классификация режимов в зависимости от соотношения скорости движения нагрузки и резонансной скорости, а также от знака линейного коэффициента дисперсии покрытия. Установлены режимы, в которых имеет место излучение от источника. Полученные результаты могут быть обобщены на случай более сложных физических свойств материала покрытия, включая эффекты анизотропии, вязкости и предварительной деформации.


Каплунов Ю. Д., Облакова Т. В., Приказчиков Д. А. Околорезонансные режимы подвижной нагрузки в плоской задаче теории упругости для полупространства с тонким покрытием. Математическое моделирование и численные методы, 2014, №1 (1), c. 57-67



533.6.011.5 Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах

Котенев В. П. (МГТУ им.Н.Э.Баумана), Булгаков В. Н. (МГТУ им.Н.Э.Баумана), Ожгибисова Ю. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-3-3352


Разработана модификация метода Польгаузена, позволяющая быстро и эффективно получить распределение теплового потока по поверхности затупленных тел. Проведены расчеты, их результаты приведены в сравнении с численным решением задачи в рамках уравнений Навье — Стокса.


Котенев В. П., Булгаков В. Н., Ожгибисова Ю. С. Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах. Математическое моделирование и численные методы, 2016, №3 (11), c. 33-52



539.3 Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-4766


Разработана многомасштабная модель деформирования многослойных тонких пластин из композиционных материалов с уединенными дефектами. Модель основана на асимптотическом анализе общих трехмерных уравнений механики деформируемого твердого тела. Общее решение трехмерных уравнений сведено к решению задач для тонких пластин без дефектов и локальных трехмерных задач в окрестности дефекта с условием затухания решения на удалении от дефекта. Для расчета многослойных пластин использованы локальные задачи, которые позволяют найти явное решение для всех шести компонент тензора напряжений, в области без дефекта. В зоне дефекта напряжения и перемещения представляет собой суперпозицию двух решений: полученного на основе двумерного расчета пластин и локальной трехмерной задачи механики. Приведен пример численного конечно элементного решения локальной задачи механики для трехслойной композитной пластины с уединенным дефектом в среднем слое. Показано, что влияние дефекта локализовано в непосредственной его окрестности, а максимум концентрации трансверсальных напряжений достигается в окрестности вершины дефекта.


Димитриенко Ю. И., Юрин Ю. В. Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами. Математическое моделирование и численные методы, 2016, №4 (12), c. 47-66



51-72:519.688 Моделирование фрактального композита и исследование его электрических характеристик

Корчагин С. А. (СГТУ имени Гагарина Ю.А.), Терин Д. В. (СГТУ имени Гагарина Ю.А.), Клинаев Ю. В. (СГТУ имени Гагарина Ю.А.)


doi: 10.18698/2309-3684-2017-1-2231


Рассмотрена модель слоистого иерархически построенного композита, структура которого имеет морфологию, подобную фрактальному образованию. Разработан алгоритм исследования взаимодействия переменного электрического поля с фрактальным композитом, а также программный комплекс, позволяющий осуществлять моделирование фрактальных характеристик исследуемого композита и производить расчеты электрических параметров композитной среды. Исследованы границы применения разработанной модели: максимальные и минимальные размеры композита, при которых проявляются фрактальные свойства. Изучены частотные зависимости диэлектрической проницаемости фрактального композита.
Результаты исследования могут быть использованы при конструировании материалов с заранее заданными электрофизическими параметрами и характеристиками, а также при разработке элементов и устройств, обладающих поглощающими и селективными свойствами.


Корчагин С. А., Терин Д. В., Клинаев Ю. В. Моделирование фрактального композита и исследование его электрических характеристик. Математическое моделирование и численные методы, 2017, №1 (13), c. 22-31



539.3 Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования

Белкин А. Е. (МГТУ им.Н.Э.Баумана), Даштиев И. З. (ЦНИИСМ), Лонкин Б. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-3954


Представлена математическая модель вязкоупругого поведения полиуретана СКУ-ПФЛ-100 для диапазона деформаций 0...30 % и умеренно высоких скоростей деформирования, не превышающих значения 10−1. Для определения вязкой составляющей деформации применена реологическая модель Бергстрема – Бойс. Связь напряжения с упругой составляющей деформации описана с помощью потенциала Арруды – Бойс. Для определения параметров модели использовались экспериментальные диаграммы сжатия полиуретана, полученные на машине Instron Electropuls 1000 при различных скоростях деформирования. Приведены значения параметров модели, найденные путем минимизации функции отклонений расчетных величин от результатов эксперимента. Показано, что в рассмотренном диапазоне деформаций и их скоростей модель позволяет описать поведение полиуретана с достаточной для практических целей точностью. Модель предназначена для расчета полиуретановых деталей амортизаторов, поглощающих аппаратов, буферов и других конструкций, испытывающих динамические нагрузки.


Белкин А. Е., Даштиев И. З., Лонкин Б. В. Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 39-54



539.3 Теория пластин, основанная на методе асимптотических разложений

Шешенин С. В. (МГУ им. М.В. Ломоносова), Скопцов К. А. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2014-2-4961


Приведено сравнение результатов асимптотического анализа поперечного изгиба многослойной пластины под воздействием поверхностной нагрузки с классическими теориями тонких и толстых пластин. Слои пластины полагаются составленными из однородных упругих ортотропных материалов.


Шешенин С. В., Скопцов К. А. Теория пластин, основанная на методе асимптотических разложений. Математическое моделирование и численные методы, 2014, №2 (2), c. 49-61



534.142:536.24+621.63 Моделирование автоколебаний напорного движения газа, возбуждаемых теплоподводом

Басок Б. И. (Институт технической теплофизики НАН Украины), Гоцуленко В. В. (Институт технической теплофизики НАН Украины)


doi: 10.18698/2309-3684-2016-4-1733


Получена математическая модель для определения параметров продольных автоколебаний, самовозбуждающихся в напорном движении газа при локальном теплоподводе к потоку. Установлено, что при определенных условиях подвод теплоты к газу изменяет гидравлические характеристики течения, порождая эффект «отрицательного» сопротивления. В этом случае возбуждение автоколебаний возможно даже при монотонно убывающей напорной характеристике нагнетателя.


Басок Б. И., Гоцуленко В. В. Моделирование автоколебаний напорного движения газа, возбуждаемых теплоподводом. Математическое моделирование и численные методы, 2016, №4 (12), c. 17-33



551.5:517 Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля

Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2014-2-115126


В течение последних десятилетий наблюдаются изменения климата, выражающиеся в его глобальном потеплении. Эти изменения в основном связывают с антропогенным увеличением количества парниковых газов в атмосфере (главный из них — СО2). В статье рассматривается проблема и возможность стабилизации климата на современном уровне. Исследование ведется на основе сезонной глобальной совместной трехмерной гидродинамической модели климата, включающей модель Мирового океана с реальными глубинами и конфигурацией материков,
модель эволюции морского льда и энерго-влагобалансовую модель атмосферы. На первом этапе проведены расчеты прогнозирования климата до 2100 г. с использованием сценария роста СО2 А2, предложенного IPCC. Они дают увеличение среднегодовой поверхностной температуры атмосферы на 3,5 С. Проведены серии расчетов для оценки возможности стабилизации климата на уровне 2010 г. путем управления выбросами в стратосферу сульфатного аэрозоля, отражающего и рассеивающего часть приходящего солнечного излучения. Вычислены концентрации (альбедо) аэрозоля с 2010 до 2100 г., позволяющие стабилизировать среднегодовую температуру поверхностного слоя атмосферы. Показано, что таким путем невозможно добиться приближения климата к существующему, хотя можно значительно ослабить парниковый эффект. При условии однородного по пространству распределения аэрозоля в стратосфере можно стабилизировать среднюю глобальную температуру атмосферы, но при этом в низких и средних иротах климат будет холоднее на 0,1…0,2 С, а в высоких широтах — теплее на 0,2…1,2 С. Кроме того, эти различия имеют сильно выраженный сезонный ход — в зимний период они увеличиваются. Прекращение выбросов аэрозоля в 2080 г. приведет к быстрому увеличению средней глобальной температуры атмосферы, приближающейся в 2100 г. к значению температуры без аэрозоля.


Пархоменко В. П. Моделирование стабилизации глобального климата управляемыми выбросами стратосферного аэрозоля. Математическое моделирование и численные методы, 2014, №2 (2), c. 115-126



<< 4 >>