V. N. Bulgakov (Bauman Moscow State Technical University) :


Articles:

533.6 Modeling a neural network to solve the problem of classifying air frame elements

Bulgakov V. N. (Bauman Moscow State Technical University), Raclav R. A. (Bauman Moscow State Technical University), Sapozhnikov D. A. (Bauman Moscow State Technical University), Chernyshev I. V. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2018-4-5771


The paper introduces a neural network implemented to classify air frame surface ele-ments. Within the research, we generated a sample containing the surface parameters of classification objects. In order to avoid errors associated with different measurement scales, the criteria were scaled. According to synthetic data, the neural network was trained, and the proposed model was verified. The optimal configuration of the neural network was determined experimentally. As a criterion of optimality, we used the proportion of correct answers from the test and training samples, and carried out calibration and modification of individual model parameters. The classification results of the test sample by the optimal network were summarized in the error matrix. The most significant result was achieved when distinguishing the class of ellipsoids. Separate blocks of the matrix show that the neural network accurately distinguishes the classes of ellipsoids and hyperboloids. The study proposes some ideas for further modification of the algorithm in order to increase the proportion of correct answers when distinguishing the class of paraboloids.


Булгаков В.Н., Рацлав Р.А., Сапожников Д.А., Чернышев И.В. Моделирование нейронной сети для решения задачи классификации элементов корпуса летательного аппарата. Математическое моделирование и численные методы, 2018, № 4, с. 57–71.



533.6.011.5 Modeling supersonic flow around blunted cones, taking into account the curvature discontinuity along the generatrix of the solid

Bulgakov V. N. (Bauman Moscow State Technical University), Kotenev V. P. (Bauman Moscow State Technical University), Sapozhnikov D. A. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2017-2-8193


The article presents an analytical expression for calculating pressure on the surface of blunted cones in a supersonic gas flow, taking into account the curvature discontinuity along the generatrix. We used a genetic algorithm and multi-stage functional optimisation methods for the least-squares method to determine free parameters of the expression. We compare the results obtained to the rigorous numerical solution to the inviscid problem. The comparison shows that it is possible to use the analytical expression for pressure distribution over a surface in a wide Mach number range for various cone halfangles. The expression proposed accounts for the curvature discontinuity along the generatrix at the point where the sphere is tangent to the conical surface, unlike the expressions found in previously published works.


Bulgakov V.N., Kotenev V.P., Sapozhnikov D.A. Modeling supersonic flow around blunted cones, taking into account the curvature discontinuity along the generatrix of the solid. Маthematical Modeling and Coтputational Methods, 2017, №2 (14), pp. 81-93



533.6.011.5 Modification of Pohlhausen method for calculating heat transfer on blunt bodies

Kotenev V. P. (Bauman Moscow State Technical University), Bulgakov V. N. (Bauman Moscow State Technical University), Ozhgibisova Y. S. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2016-3-3352


Modification of Pohlhausen method is developed. It allows for quick and effective heat transfer distribution over the blunt body surfaces. Calculations were done. Their results are described in comparison with the numerical solution of a problem within the framework of Navier — Stokes equations.


Kotenev V., Bulgakov V., Ozhgibisova Y. Modification of Pohlhausen method for calculating heat transfer on blunt bodies. Маthematical Modeling and Coтputational Methods, 2016, №3 (11), pp. 33-52