Рубрика: "01.02.00 Механика"



539.384 Моделирование устойчивости сжатого и скрученного стержня в точной постановке задачи

Дубровин В. М. (МГТУ им.Н.Э.Баумана), Бутина Т. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-316


Предложен метод расчета устойчивости стержня при одновременном действии осевой силы и крутящего момента, учитывающий изменение кручения стержня при его искривлениях и основанный на использовании полной системы уравнений. Рассмотрены случаи: стержень с заделанными концами, стержень с шарнирными опорами, стержень в виде сжатой и скрученной консоли. Получены графики зависимости критической осевой силы от критического крутящего момента, т. е. определена область устойчивости стержня для рассматриваемого случая нагружения.


Дубровин В. М., Бутина Т. А. Моделирование устойчивости сжатого и скрученного стержня в точной постановке задачи. Математическое моделирование и численные методы, 2015, №3 (7), c. 3-16



519.63:532.5 Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях

Басараб М. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-1835


Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).


Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35



539.3:519.63 Численное моделирование деформирования анизогридных конструкций с применением высокоточных схем без насыщения

Голушко С. К. (Институт вычислительных технологий/Конструкторско-технологический институт вычислительной техники СО РАН), Семисалов Б. В. (Институт вычислительных технологий)


doi: 10.18698/2309-3684-2015-2-2345


Рассмотрен класс перспективных анизогридных конструкций, представляющих сетчатые оболочки из углепластика. Приведен краткий анализ существующих подходов к моделированию сетчатых конструкций. Для достоверного описания сложного поведения анизогридных конструкций при воздействии различных нагру-зок предложены математическая и вычислительная модели. Высокая степень точности и устойчивости вычислительной модели, основанной на разложениях неизвестных функций по базису Фурье и базису, состоящему из полиномов Чебы-шева, обусловлена отсутствием насыщения таких методов приближения. Эф-фективность предложенных моделей и методов показана на примере решения тестовых краевых задач и задачи осевого сжатия анизогридной цилиндрической оболочки.


Голушко С. К., Семисалов Б. В. Численное моделирование деформирования анизогридных конструкций с применением высокоточных схем без насыщения. Математическое моделирование и численные методы, 2015, №2 (6), c. 23-45



539.3 Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования

Белкин А. Е. (МГТУ им.Н.Э.Баумана), Даштиев И. З. (ЦНИИСМ), Лонкин Б. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-3954


Представлена математическая модель вязкоупругого поведения полиуретана СКУ-ПФЛ-100 для диапазона деформаций 0...30 % и умеренно высоких скоростей деформирования, не превышающих значения 10−1. Для определения вязкой составляющей деформации применена реологическая модель Бергстрема – Бойс. Связь напряжения с упругой составляющей деформации описана с помощью потенциала Арруды – Бойс. Для определения параметров модели использовались экспериментальные диаграммы сжатия полиуретана, полученные на машине Instron Electropuls 1000 при различных скоростях деформирования. Приведены значения параметров модели, найденные путем минимизации функции отклонений расчетных величин от результатов эксперимента. Показано, что в рассмотренном диапазоне деформаций и их скоростей модель позволяет описать поведение полиуретана с достаточной для практических целей точностью. Модель предназначена для расчета полиуретановых деталей амортизаторов, поглощающих аппаратов, буферов и других конструкций, испытывающих динамические нагрузки.


Белкин А. Е., Даштиев И. З., Лонкин Б. В. Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 39-54



536.2 Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Пугачев О. В. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-5365


Многие используемые в технике теплозащитные материалы имеют пористую структуру. При интенсивном тепловом воздействии возникает необходимость учитывать перенос тепловой энергии путем излучения в порах таких материалов. Построена математическая модель, описывающая теплообмен излучением в шаровой полости, форму которой можно рассматривать как среднюю
статистическую по отношению к формам замкнутых пор в твердых телах. Для количественного анализа этой модели использован метод наименьших квадратов. Введен эквивалентный коэффициент теплопроводности условной сплошной среды, заполняющей пору, что позволяет рассматривать материал с пористой структурой как сплошное неоднородное твердое тело.


Зарубин В. С., Пугачев О. В., Савельева И. Ю. Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости. Математическое моделирование и численные методы, 2015, №4 (8), c. 53-65



539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-323


Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23



531.36:521.1 Моделирование динамики космической станции в окрестности астероида

Родников А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-5568


Предлагается классификация задач динамики космической станции, совершающей полет в окрестности малой планеты, чье движение вокруг центра масс является регулярной прецессией. Классификация проводится по трем признакам: модели потенциала астероида, способа удерживания станции около малой планеты и решаемой динамической задачи. Приводится обзор результатов автора, полученных к настоящему времени при анализе сформулированных в рамках этой классификации задач. В частности, в случае, когда потенциал астероида моделируется композицией потенциалов двух точечных (действительных или комплексно сопряженных) масс, находящихся на действительном или мнимом расстоянии, строятся множества стационарных орбит свободной станции, а также положений равновесия станции на леере, т.е. тросе, концы которого закреплены в полюсах астероида. Проводится анализ устойчивости некоторых из найденных орбит и положений равновесия. Приводятся некоторые случаи интегрируемости уравнений движения космической станции вдоль леера


Родников А. В. Моделирование динамики космической станции в окрестности астероида. Математическое моделирование и численные методы, 2016, №2 (10), c. 55-68



537.876.4:517.958 Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения

Апельцин В. Ф. (МГТУ им.Н.Э.Баумана), Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-327


Рассмотрена двумерная краевая задача о прохождении плоской электромагнитной волны через периодическую слоистую среду, имеющую структуру одномерного фотонного кристалла. Структура имеет конечное число плоскопараллельных слоев, в которой каждая ячейка периодичности состоит из двух слоев с разными действительными значениями постоянной диэлектрической проницаемости и разными толщинами. Показано, что при некотором дополнительном условии, связывающем угол падения плоской волны, толщины слоев, частоту и диэлектрические проницаемости слоев, задача решается до конца в явном виде и приводит к простым выражениям для отраженного от структуры и прошедшего сквозь нее волновых полей. При этом в случае Н-поляризованного поля, в отличие от случая Е-поляризации, свойства данной среды зависят от отношения толщин слоев, умноженных на их диэлектрические проницаемости (при Е-поляризации — только от отношения толщин). В результате фотонный кристалл в зависимости от частоты поля может вести себя как идеально отражающая структура при тех же отношениях толщин слоев, при которых в случае Е-поляризации он становится волноведущей структурой, и наоборот. Произведено сравнение численных расчетов со случаем Е-поляризации.


Апельцин В. Ф., Мозжорина Т. Ю. Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения . Математическое моделирование и численные методы, 2014, №2 (2), c. 3-27



531.6.011.32:532.582.4:517.958 Построение полубесконечного эквивалентного тела при математическом моделировании дозвукового отрывного осесимметричного обтекания

Тимофеев В. Н. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-6783


Проведено математическое моделирование процесса отрывного обтекания осесимметричных тел при дозвуковых скоростях набегающего потока на основе концепции вязко-невязкого взаимодействия. Скорости и давления на поверхности исследуемого тела найдены по результатам расчета невязкого обтекания некоторого эквивалентного тела. Влияние спутного следа смоделировано хвостовым участком эквивалентного тела. Вместо хвостовых участков конечной длины были рассмотрены полубесконечные хвостовые участки эквивалентного тела. Изучены режимы течения с отрывом потока в донной области. Для численного моделирования использован метод дискретных вихрей. Донное давление найдено по формуле Хорнера. Проведено математическое моделирование обтекания цилиндрических тел с головной частью оживальной формы.


Тимофеев В. Н. Построение полубесконечного эквивалентного тела при математическом моделировании дозвукового отрывного осесимметричного обтекания. Математическое моделирование и численные методы, 2016, №4 (12), c. 67-83



1>>