Рубрика: "01.02.00 Механика"



517.9:539.3:519.6 Численное моделирование движения абсолютно гибкого стержня в потоке воздуха

Сорокин Ф. Д. (Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Низаметдинов Ф. Р. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-316


Предложен алгоритм расчета напряженно-деформированного состояния абсолютно гибких стержней, взаимодействующих с внешним потоком воздуха. Этот алгоритм основан на замене континуальной механической системы дискретным набором прямолинейных конечных элементов и сосредоточенных масс. Дифференциальные уравнения движения масс, записанные с учетом аэродинамических нагрузок и диссипативных сил, проинтегрированы численным методом, что позволило найти как положение равновесия гибкого стержня в потоке, так и критическую скорость потока, при превышении которой начинаются интенсивные вибрации стержня.


Сорокин Ф. Д., Низаметдинов Ф. Р. Численное моделирование движения абсолютно гибкого стержня в потоке воздуха. Математическое моделирование и численные методы, 2016, №1 (9), c. 3-16



539.3 Теория пластин, основанная на методе асимптотических разложений

Шешенин С. В. (МГУ им. М.В. Ломоносова), Скопцов К. А. (МГУ им. М.В. Ломоносова)


doi: 10.18698/2309-3684-2014-2-4961


Приведено сравнение результатов асимптотического анализа поперечного изгиба многослойной пластины под воздействием поверхностной нагрузки с классическими теориями тонких и толстых пластин. Слои пластины полагаются составленными из однородных упругих ортотропных материалов.


Шешенин С. В., Скопцов К. А. Теория пластин, основанная на методе асимптотических разложений. Математическое моделирование и численные методы, 2014, №2 (2), c. 49-61



536.2 Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Пугачев О. В. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-5365


Многие используемые в технике теплозащитные материалы имеют пористую структуру. При интенсивном тепловом воздействии возникает необходимость учитывать перенос тепловой энергии путем излучения в порах таких материалов. Построена математическая модель, описывающая теплообмен излучением в шаровой полости, форму которой можно рассматривать как среднюю
статистическую по отношению к формам замкнутых пор в твердых телах. Для количественного анализа этой модели использован метод наименьших квадратов. Введен эквивалентный коэффициент теплопроводности условной сплошной среды, заполняющей пору, что позволяет рассматривать материал с пористой структурой как сплошное неоднородное твердое тело.


Зарубин В. С., Пугачев О. В., Савельева И. Ю. Применение метода наименьших квадратов к задаче о переносе излучения в шаровой полости. Математическое моделирование и численные методы, 2015, №4 (8), c. 53-65



532.5:551.465 Численное моделирование воздействия точечного импульсного источника в жидкости на ледяной покров

Савин А. С. (МГТУ им.Н.Э.Баумана), Горлова Н. Е. (МГТУ им.Н.Э.Баумана), Струнин П. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-1-7890


Рассмотрены плоская и пространственная задачи о возмущении ледяного покрова точечным импульсным источником, локализованным в толще бесконечно глубокой жидкости. Проведено численное исследование возмущений ледяного покрова разной толщины источниками, находящимися на разных глубинах. Основное внимание уделено возмущениям ледяного покрова, возникающим непосредственно над источником.


Савин А. С., Горлова Н. Е., Струнин П. А. Численное моделирование воздействия точечного импульсного источника в жидкости на ледяной покров. Математическое моделирование и численные методы, 2017, №1 (13), c. 78-90



539.3 Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана), Базылева О. А. (ФГУП «ВИАМ» ГНЦ РФ), Луценко А. Н. (ФГУП «ВИАМ» ГНЦ РФ), Орешко Е. И. (ФГУП «ВИАМ» ГНЦ РФ)


doi: 10.18698/2309-3684-2015-2-322


Предложена модель микроструктуры двухфазных монокристаллических интерметаллидных сплавов в виде периодической структуры гексагонального типа, а также математическая модель упругопластического деформирования монокристаллического сплава, основанная на методе асимптотической гомогенизации периодических структур. Для фаз используется деформационная теория пластично-сти при активном нагружении с учетом эффекта их повреждаемости. Для численных расчетов по разработанной модели использован жаропрочный моно-кристаллический сплав ВКНА-1В. Проведены конечно-элементные расчеты микромеханических процессов деформирования и разрушения монокристаллического сплава ВКНА-1В. Установлено, что при растяжении максимальные значения параметра повреждаемости фаз, определяющего зону начала микроразрушения сплава, достигаются в зонах, прилегающих к поверхностям раздела фаз и в местах максимального искривления геометрической формы фаз. Проведены расчеты диаграмм деформирования жаропрочных сплавов в области пластичности, которые показали достаточно хорошее совпадение с экспериментальными данными.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В., Базылева О. А., Луценко А. Н., Орешко Е. И. Моделирование упругопластических характеристик монокристаллических интерметаллидных сплавов на основе микроструктурного численного анализа. Математическое моделирование и численные методы, 2015, №2 (6), c. 3-22



539.3:621.01 Численное моделирование процессов нелинейного деформирования тонких упругих оболочек

Гаврюшин С. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-115130


Излагаются теоретические основы методики и алгоритмы, разработанные для анализа устойчивости и закритического поведения тонких упругих оболочек. Обсуждается задача численного анализа процесса нелинейного деформирования сферического купола, нагруженного равномерным внешним давлением. Описывается алгоритм численного анализа, основанный на использовании метода продолжения решения по параметру в сочетании с приемом смены подпространства управляющих параметров. Эффективность предложенного алгоритма иллюстрируется примерами расчетов.


Гаврюшин С. С. Численное моделирование процессов нелинейного деформирования тонких упругих оболочек. Математическое моделирование и численные методы, 2014, №1 (1), c. 115-130



539.3 Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования

Белкин А. Е. (МГТУ им.Н.Э.Баумана), Даштиев И. З. (ЦНИИСМ), Лонкин Б. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-3954


Представлена математическая модель вязкоупругого поведения полиуретана СКУ-ПФЛ-100 для диапазона деформаций 0...30 % и умеренно высоких скоростей деформирования, не превышающих значения 10−1. Для определения вязкой составляющей деформации применена реологическая модель Бергстрема – Бойс. Связь напряжения с упругой составляющей деформации описана с помощью потенциала Арруды – Бойс. Для определения параметров модели использовались экспериментальные диаграммы сжатия полиуретана, полученные на машине Instron Electropuls 1000 при различных скоростях деформирования. Приведены значения параметров модели, найденные путем минимизации функции отклонений расчетных величин от результатов эксперимента. Показано, что в рассмотренном диапазоне деформаций и их скоростей модель позволяет описать поведение полиуретана с достаточной для практических целей точностью. Модель предназначена для расчета полиуретановых деталей амортизаторов, поглощающих аппаратов, буферов и других конструкций, испытывающих динамические нагрузки.


Белкин А. Е., Даштиев И. З., Лонкин Б. В. Моделирование вязкоупругости полиуретана при умеренно высоких скоростях деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 39-54



517.1:539.434 Механический аналог, моделирующий процессы неупругого неизотермического деформирования

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Кувыркин Г. Н. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-2538


Представлен механический аналог, позволяющий на качественном и количественном уровнях описать основные особенности неупругого деформирования конструкционного материала при переменных температурах. Аналог построен с использованием физических представлений о микроструктуре поликристаллических конструкционных материалов и микромеханизме процесса их деформирования в сочетании с известными положениями феноменологических теорий пластичности и ползучести. Применительно к конкретным режимам теплового и механического воздействий на теплонапряженную конструкцию такой подход позволяет выбрать рациональный вариант модели конструкционного материала, достаточно полно описывающий наиболее существенные эффекты, характерные для процесса неупругого неизотермического деформирования. Разработан один из вариантов такой модели при одноосном нагружении материала и приведен пример подбора числовых значений ее параметров.


Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Механический аналог, моделирующий процессы неупругого неизотермического деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 25-38



533.6.011.5 Моделирование сверхзвукового обтекания затупленных конусов с учетом разрыва кривизны образующей тела

Булгаков В. Н. (МГТУ им.Н.Э.Баумана), Котенев В. П. (МГТУ им.Н.Э.Баумана), Сапожников Д. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-2-8193


Предложена аналитическая зависимость для расчета давления на поверхности затупленных конусов, обтекаемых сверхзвуковым потоком газа, с учетом разрыва кривизны образующей. Для определения свободных параметров зависимости применялись генетический алгоритм и каскадные методы оптимизации функционала метода наименьших квадратов. Полученные результаты даны в сравнении со строгим численным решением невязкой задачи. Сравнение показывает, что возможно использовать аналитическую формулу для распределения давления по поверхности в широком диапазоне чисел Маха при разных углах полураствора конуса. В отличие от известных работ предлагаемая зависимость позволяет учесть разрыв кривизны образующей в точке сопряжения сферы с конической поверхностью.


Булгаков В.Н., Котенев В.П., Сапожников Д.А. Моделирование сверхзвуково- го обтекания затупленных конусов с учетом разрыва кривизны образующей тела. Математическое моделирование и численные методы, 2017, No 2, с. 81–93.



1>>