Рубрика: "01.02.00 Механика"
doi: 10.18698/2309-3684-2015-4-7591
Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta discontinuous Galerkin) для численного интегрирования трехмерной системы уравнений идеального газа на неструктурированных сетках. Проведено решение двух тестовых задач с помощью представленного алгоритма. Для каждой задачи приведено сравнение с известными аналитическими решениями или же с табличными данными. Дана оценка погрешности решения.
Димитриенко Ю. И., Коряков М. Н., Захаров А. А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, №4 (8), c. 75-91
531.36:521.1 Моделирование динамики космической станции в окрестности астероида
doi: 10.18698/2309-3684-2016-2-5568
Предлагается классификация задач динамики космической станции, совершающей полет в окрестности малой планеты, чье движение вокруг центра масс является регулярной прецессией. Классификация проводится по трем признакам: модели потенциала астероида, способа удерживания станции около малой планеты и решаемой динамической задачи. Приводится обзор результатов автора, полученных к настоящему времени при анализе сформулированных в рамках этой классификации задач. В частности, в случае, когда потенциал астероида моделируется композицией потенциалов двух точечных (действительных или комплексно сопряженных) масс, находящихся на действительном или мнимом расстоянии, строятся множества стационарных орбит свободной станции, а также положений равновесия станции на леере, т.е. тросе, концы которого закреплены в полюсах астероида. Проводится анализ устойчивости некоторых из найденных орбит и положений равновесия. Приводятся некоторые случаи интегрируемости уравнений движения космической станции вдоль леера
Родников А. В. Моделирование динамики космической станции в окрестности астероида. Математическое моделирование и численные методы, 2016, №2 (10), c. 55-68
doi: 10.18698/2309-3684-2015-2-5872
Представлена математическая модель переноса фотонов и генерации ими вто-ричных электромагнитных полей в конструкции сложной геометрической формы и упаковки. Приведен эскизный чертеж модельной конструкции изделия. Пред-ставлены результаты расчетов потока фотонов в различных элементах конст-рукции модельного изделия. Показано, что пакет материалов корпуса изделия может резко ослаблять поток фотонов, рассеивая не только мягкие, но и жест-кие кванты, причем интенсивность поглощения имеет ярко выраженные макси-мумы. В газовой среде внутри изделия образуется объемный заряд и электроста-тическое поле. При этом в малой пространственной области внутри корпуса изделия электрическое поле может достигать большой амплитуды
Березин А. В., Жуков Д. А., Жуковский М. Е., Конюков В. В., Крайнюков В. И., Марков М. Б., Помазан Ю. В., Потапенко А. И. Моделирование электромагнитных эффектов в сложных конструкциях при воздействии импульсных излучений. Математическое моделирование и численные методы, 2015, №2 (6), c. 58-72
doi: 10.18698/2309-3684-2015-2-2345
Рассмотрен класс перспективных анизогридных конструкций, представляющих сетчатые оболочки из углепластика. Приведен краткий анализ существующих подходов к моделированию сетчатых конструкций. Для достоверного описания сложного поведения анизогридных конструкций при воздействии различных нагру-зок предложены математическая и вычислительная модели. Высокая степень точности и устойчивости вычислительной модели, основанной на разложениях неизвестных функций по базису Фурье и базису, состоящему из полиномов Чебы-шева, обусловлена отсутствием насыщения таких методов приближения. Эф-фективность предложенных моделей и методов показана на примере решения тестовых краевых задач и задачи осевого сжатия анизогридной цилиндрической оболочки.
Голушко С. К., Семисалов Б. В. Численное моделирование деформирования анизогридных конструкций с применением высокоточных схем без насыщения. Математическое моделирование и численные методы, 2015, №2 (6), c. 23-45
doi: 10.18698/2309-3684-2016-3-323
Разработана многоуровневая модель для многомасштабного деформирования трехслойных (сэндвичевых) конструкций из полимерных композиционных материалов типа пластин с заполнителем на основе пенопласта, учитывающая микромеханические процессы деформирования и повреждаемости матрицы, армирующего наполнителя и пенопласта, а также макроскопические дефекты типа непропитки композитных обшивок. Проведено конечно-элементное моделирование напряженно-деформированного состояния, повреждаемости и разрушения трехслойных пластин с обшивками из гибридных композитов из углепластика, с различными размерами дефекта типа непропитки, при изгибе равномерным давлением. Установлены особенности процесса деформирования и повреждаемости данного типа композитных конструкций. Разработанная методика может быть применена для расчета деформирования, повреждаемости и разрушения трехслойных пластин из полимерных композиционных материалов, применяемых в различных отраслях промышленности: судостроении, авиастроении, ракетостроении.
Димитриенко Ю. И., Юрин Ю. В., Федонюк Н. Н. Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами. Математическое моделирование и численные методы, 2016, №3 (11), c. 3-23
539.3 Асимптотическая теория термоползучести многослойных тонких пластин
doi: 10.18698/2309-3684-2014-4-1836
Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.
Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36
517.1:539.434 Механический аналог, моделирующий процессы неупругого неизотермического деформирования
doi: 10.18698/2309-3684-2014-3-2538
Представлен механический аналог, позволяющий на качественном и количественном уровнях описать основные особенности неупругого деформирования конструкционного материала при переменных температурах. Аналог построен с использованием физических представлений о микроструктуре поликристаллических конструкционных материалов и микромеханизме процесса их деформирования в сочетании с известными положениями феноменологических теорий пластичности и ползучести. Применительно к конкретным режимам теплового и механического воздействий на теплонапряженную конструкцию такой подход позволяет выбрать рациональный вариант модели конструкционного материала, достаточно полно описывающий наиболее существенные эффекты, характерные для процесса неупругого неизотермического деформирования. Разработан один из вариантов такой модели при одноосном нагружении материала и приведен пример подбора числовых значений ее параметров.
Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Механический аналог, моделирующий процессы неупругого неизотермического деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 25-38
539.3 Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой
doi: 10.18698/2309-3684-2014-1-3656
Предложена теория тонких конструктивно-ортотропных пластин, обладающих двухпериодической структурой, примером которых являются сотовые многослойные панели и подкрепленные пластины. Теория построена на основе уравнений об-щей трехмерной теории упругости путем с помощью асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения напряжений во всех конструктивных элементах пластины. Показано, что полученные глобальные (осредненные по определенным правилам) уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием третьего порядка производных от продольных перемещений. Предложенный метод позволяет вычислить все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить локальные задачи до третьего приближения включительно. Приведен пример конечно-элементного решения локальных задач нулевого приближения для сотовой конструкции, который показал, что разработанный метод расчета пластин и его численная реализация достаточно эффективны, они позволяют проводить расчеты для сложных конструктивно-ортотропных пластин с сильно различающимися значениями упругих характеристик.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, №1 (1), c. 36-56
doi: 10.18698/2309-3684-2015-3-89100
В работе рассматривается задача оценки функций пересчёта наработок до отказа с одного режима на другой. Данная задача возникает, например, когда имеются данные по наработкам изделий в стендовых испытаниях, и требуется вычислить показатели надежности этих изделий в реальных условиях эксплуатации. Для простоты рассматривается случай, когда наработки до отказа связаны линейным соотношением. Предлагаемый метод основывается на минимизации статистики типа Колмогорова-Смирнова, которая применяется для проверки однородности двух прогрессивно цензурированных выборок. Особенностью предлагаемой статистики является использование оценок Каплана-Мейера функции надежности по каждой выборке. В работе предлагается метод вычисления точных распределений данной статистики при справедливости проверяемой гипотезы, которые в этом случае не зависят от вида функции распределения наработок до отказа элементов. Табулированы значения точных квантилей рассматриваемой статистики. Методами статистического моделирования показана состоятельность предложенной оценки для линейной функции связи.
Тимонин В. И., Тянникова Н. Д. Сравнение прогрессивно цензурированных выборок – численные методы табулирования распределений статистик однородности и исследование оценки параметров связи их распределений методом Монте-Карло. Математическое моделирование и численные методы, 2015, №3 (7), c. 89-100