Рубрика: "01.02.00 Механика"
532.28 Моделирование волнового воздействия стратифицированного течения на подводный трубопровод
doi: 10.18698/2309-3684-2014-2-6276
Исследованы силовые воздействия на подводный трубопровод, связанные с генерацией волн на границе слоев придонного течения. Получено интегральное представление для силы воздействия со стороны водной среды на трубопровод, проведен его численный анализ. Выявлены условия обтекания, при которых происходит значительное увеличение гидродинамических реакций.
Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Моделирование волнового воздействия стратифицированного течения на подводный трубопровод. Математическое моделирование и численные методы, 2014, №2 (2), c. 62-76
539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости
doi: 10.18698/2309-3684-2016-2-323
Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23
539.3 Асимптотическая теория термоползучести многослойных тонких пластин
doi: 10.18698/2309-3684-2014-4-1836
Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.
Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36
531.36:521.1 Моделирование динамики космической станции в окрестности астероида
doi: 10.18698/2309-3684-2016-2-5568
Предлагается классификация задач динамики космической станции, совершающей полет в окрестности малой планеты, чье движение вокруг центра масс является регулярной прецессией. Классификация проводится по трем признакам: модели потенциала астероида, способа удерживания станции около малой планеты и решаемой динамической задачи. Приводится обзор результатов автора, полученных к настоящему времени при анализе сформулированных в рамках этой классификации задач. В частности, в случае, когда потенциал астероида моделируется композицией потенциалов двух точечных (действительных или комплексно сопряженных) масс, находящихся на действительном или мнимом расстоянии, строятся множества стационарных орбит свободной станции, а также положений равновесия станции на леере, т.е. тросе, концы которого закреплены в полюсах астероида. Проводится анализ устойчивости некоторых из найденных орбит и положений равновесия. Приводятся некоторые случаи интегрируемости уравнений движения космической станции вдоль леера
Родников А. В. Моделирование динамики космической станции в окрестности астероида. Математическое моделирование и численные методы, 2016, №2 (10), c. 55-68
539.3 Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой
doi: 10.18698/2309-3684-2014-1-3656
Предложена теория тонких конструктивно-ортотропных пластин, обладающих двухпериодической структурой, примером которых являются сотовые многослойные панели и подкрепленные пластины. Теория построена на основе уравнений об-щей трехмерной теории упругости путем с помощью асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения напряжений во всех конструктивных элементах пластины. Показано, что полученные глобальные (осредненные по определенным правилам) уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием третьего порядка производных от продольных перемещений. Предложенный метод позволяет вычислить все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить локальные задачи до третьего приближения включительно. Приведен пример конечно-элементного решения локальных задач нулевого приближения для сотовой конструкции, который показал, что разработанный метод расчета пластин и его численная реализация достаточно эффективны, они позволяют проводить расчеты для сложных конструктивно-ортотропных пластин с сильно различающимися значениями упругих характеристик.
Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, №1 (1), c. 36-56
doi: 10.18698/2309-3684-2014-4-7487
Проведены модельные исследования силового воздействия на обтекаемые горизонтальные элементы инженерных сооружений в верхнем слое резко стратифицированного течения, связанного с генерацией волн на границе раздела жидких слоев. Получены интегральные представления волнового сопротивления и подъемной силы. Выполнены численные расчеты для реальной морской среды. Выявлены условия, при которых происходит значительное увеличение гидродинамических реакций на обтекаемые элементы конструкций.
Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Моделирование волнового воздействия на горизонтальные элементы конструкций в верхнем слое стратифицированного течения. Математическое моделирование и численные методы, 2014, №4 (4), c. 74-87
533.6.011.5 Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах
doi: 10.18698/2309-3684-2016-3-3352
Разработана модификация метода Польгаузена, позволяющая быстро и эффективно получить распределение теплового потока по поверхности затупленных тел. Проведены расчеты, их результаты приведены в сравнении с численным решением задачи в рамках уравнений Навье — Стокса.
Котенев В. П., Булгаков В. Н., Ожгибисова Ю. С. Модификация метода Польгаузена для расчета тепловых потоков на затупленных телах. Математическое моделирование и численные методы, 2016, №3 (11), c. 33-52
doi: 10.18698/2309-3684-2015-3-1740
В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. При этом их кинематические схемы также могут быть весьма разнообразны. Сбор требуемого объема информации для семейств автомобилей, различных по конструкции и эксплуатационным характеристикам, представляется неосуществимым. Провести полные аналитические исследования по определению соответствующих характеристик не представляется возможным. Эта задача с успехом может быть решена только с помощью моделирования.
Разработана математическая модель движения МКМ, особенностью которой является то, что скорость машины задается не принудительно, а формируется силами взаимодействия вращающихся колесных движителей с опорным основанием. Это позволяет получить высокую точность при моделировании реальных процессов движения МКМ по неровностям. Разработанная модель может быть применена для исследования различных законов управления подвеской многоосных колесных машин.
Жилейкин М. М., Сарач Е. Б. Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой. Математическое моделирование и численные методы, 2015, №3 (7), c. 17-40
doi: 10.18698/2309-3684-2016-1-6888
Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.
Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 1. Способы, не использующие регуляризацию. Математическое моделирование и численные методы, 2016, №1 (9), c. 68-88