doi: 10.18698/2309-3684-2022-1-314
Проведено численное моделирование процессов генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Примененные численные методы основаны на приближении медленно-меняющихся амплитуд и однонаправленном приближении, применимом для упрощения волнового уравнения с нелинейной поляризацией в диспергирующей среде. При одинаковых условиях эксперимента проведено сравнение результатов этих приближений. Сравнительный анализ показывает, что вплоть до 10 фс длительности основного импульса оба приближенных метода описывают этот процесс преобразования частоты практически одинаково, но ниже 10 фс наблюдается расхождение результатов. Сравнение проводилось, главным образом по формированию временного профиля импульса второй гармоники и её эффективности. Представлена также методика получения временных профилей импульса второй гармоники при использовании однонаправленного приближения, где падающее поле используется целиком, как в спектральной, так и во временной области расчета. При использовании приближения медленно-меняющихся амплитуд учтено влияние дисперсии до третьего порядка малости.
Рузиев З.Дж., Собиров О.И., Корабоев К.А., Сапаев У.К. Численное моделирование генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Математическое моделирование и численные методы, 2022, № 1, с. 3–14.
doi: 10.18698/2309-3684-2022-1-1541
В рамках деформационной теории пластичности при активном нагружении предложена модель определяющих соотношений упруго-пластических композитов, относящихся к классу трансверсально-изотропных материалов. Для построения нелинейных определяющих соотношений использована теория спектральных разложениях тензоров напряжений и деформаций, спектральное представление нелинейных тензорных функций для трансверсально-изотропных сред. Предложены конкретные модели функций пластичности, зависящие от спектральных инвариантов тензора деформации. Для определения констант модели предложен метод, в котором эти константы вычисляются на основе аппроксимации кривых деформирования, полученных прямым численным решением трехмерных задач на ячейке периодичности упруго-пластических композитов. Задачи на ячейке периодичности формулируются с помощью метода асимптотического осреднения периодических сред. Численное решение задач на ячейке периодичности осуществляется с помощью конечно-элементного метода в рамках программного обеспечения, разработанного в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. приведен пример численного расчета констант модели композита с помощью предложенного метода для однонаправленно-армированного композита на основе углеродных волокон и матрицы из алюминиевого сплава. Приведены примеры верификация предложенной модели для различных траекторий нагружения композита в 6 мерном пространстве напряжений. Показано, что предложенная микроструктурная модель и алгоритм определения ее констант обеспечивают достаточно высокую точность прогнозирования упруго-пластического деформирования трансверсально-изотропных композитов.
Димитриенко Ю.И., Сборщиков С.В., Димитриенко А.Ю., Юрин Ю.В. Микроструктурная модель деформационной теории пластичности трансверсально-изотропных композитов. Математическое моделирование и численные методы, 2022, № 1, с. 15–41.
doi: 10.18698/2309-3684-2022-1-4262
При проектировании изделий из композиционных материалов, предназначенных для эксплуатации в сложных условиях неоднородных деформаций и температур, важно учитывать вязкоупругие, в том числе спектральные и динамические, свойства связующего и наполнителей. В статье рассмотрены динамические характеристики (комплексный модуль, комплексная податливость, их действительные и мнимые части, тангенс угла потерь) и спектральные характеристики релаксации и ползучести и их зависимость друг от друга. Для всех известных типов ядер ползучести и ядер релаксации были найдены упомянутые выше характеристики. Для нахождения спектральных характеристик был использован один из численных метода обращения преобразования Лапласа — метод квадратурных формул с равными коэффициентами. Составлены алгоритмы и компьютерные программы для реализации этого метода. Полученные графики достаточно точные (максимальная погрешность вычислений в среднем не превосходит 5%), несмотря на то что на начальных участках времени погрешность очень заметна.
Валишин А.А., Тиняев М.А. Моделирование динамических и спектральных вязкоупругих характеристик материалов на основе численного обращения преобразования Лапласа. Математическое моделирование и численные методы, 2022, № 1, с. 42–62.
doi: 10.18698/2309-3684-2022-1-6396
В статье представлен результат обзора работ, посвященных исследованиям свойств упругопластических материалов. Статья состоит из двух частей. В первой части рассмотрены универсальные одно-, двух- и трехпараметрические законы, описывающие нелинейную зависимость между напряжением и деформацией вплоть до разрушения. В обзор вошли: степенные законы, параболические законы, экспоненциальные законы, гармонический закон. Сравнение рассмотренных эмпирических кривых с выборкой экспериментальных точек осуществляется стандартной процедурой минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. Для оценки предсказательной силы моделей на соответствие эксперименту, использована представительная выборка из 158 экспериментальных точек кривой деформирования российского титанового сплава ВТ6. Проведенный анализ показал, что универсальные эмпирические законы деформирования, содержащие менее четырех формальных параметров, не могут обеспечить инженерную точность описания кривой деформирования с заданными на концах кривой напряжением и касательным модулем. Анализ достоинств и недостатков существующих эмпирических законов деформирования, позволил сформулировать определенные требования к их формулировке.
Головина Н.Я., Белов П.А. Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 1. Математическое моделирование и численные методы, 2022, № 1, с. 63–96
539.376 Моделирование ползучести тонкостенных оболочек при переменных нагружениях
doi: 10.18698/2309-3684-2022-1-97108
При длительном нагружении в процессе эксплуатации конструкции подвержены явлению ползучести, которое может влиять на ее работоспособность. Это влияние зависит от уровня нагрузки, длительности нагружения, условий эксплуатации, конструктивных особенностей, вида материала. Все эти факторы учитываются при проведении испытаний, позволяющих получить кривые ползучести для конкретного материала и различных внешних условий, соответствующих условиям эксплуатации конструкции. В работе рассмотрена задача расчета деформаций ползучести тонкостенных цилиндрических оболочек при совместном действии внутреннего давления и осевой силы. Рассмотрена модель теории течения с упрочнением при переменных нагружениях. Приведен численный пример расчета деформаций ползучести цилиндрической оболочки для алюминиевого сплава.
Бутина Т.А., Дубровин В.М. Моделирования ползучести тонкостенных оболочек при переменных нагружениях. Математическое моделирование и численные методы, 2022, № 1, с. 97–108.
004.942 Моделирование среды предприятия с использованием дискретных вычислительных алгоритмов
doi: 10.18698/2309-3684-2022-1-109128
В настоящее время наибольшую известность получили методы моделирования и анализа изменений экономических характеристик инновационного процесса на основе уравнений диффузии вещества в среде с заданными параметрами. Результаты анализа в этом случае существенно зависят от обеспечения точности измерения параметров среды, что не всегда достижимо на практике. Представляется целесообразным переход от парадигмы диффузии к парадигме реализации инновации, т.е. к последовательному моделированию состояний инновации, переменные и характеристики которых соответствуют принятым на практике методам измерения и контроля. При таком подходе динамика экономических состояний опытно-конструкторских работ, производства и реализации инновации представляется системами обыкновенных дифференциальных уравнений, начальные условия и коэффициенты которых зависят от параметров внутренней и внешней сред предприятия. Разработанные в статье две дискретные математические модели позволяют контролировать эти параметры с использованием практических методов измерения. Первая дискретная модель представляет собой функционал, обеспечивающий пересчёт реальных параметров внутренней среды предприятия на момент начала масштабирования инновации в коэффициенты дифференциальных уравнений и начальные условия, отражающие результаты подготовки производства. Исходная информация содержится в базе данных ERP предприятия. Вторая дискретная модель реализуется как клеточный автомат. Автоматная модель внешней среды производства может использовать данные, поддающиеся практическому измерению с помощью хорошо отработанных методов маркетинга. Полученные результаты вычислительных экспериментов подтверждают обоснованность гипотезы перехода от парадигмы модели диффузии к парадигме последовательного моделирования экономических состояний инновации.
Белов В.Ф., Гаврюшин С.С., Маркова Ю.Н., Занкин А.И. Моделирование среды предприятия с использованием дискретных вычислительных алгоритмов.Математическое моделирование и численные методы, 2022, № 1, с. 109–128
519.85 Метод нахождения недоминируемых решений в задачах декомпозиции моделей сложных систем
doi: 10.18698/2309-3684-2022-1-129140
В статье рассматривается метод нахождения оптимальных решений, при наличии модели сложной технической системы, в задаче оптимального проектирования. Метод основан на использовании недоминируемых, лямбда оптимальных решений и является обобщением метода Краснощекова П.С., Морозова В.В., Федорова В.В. [1]. Метод позволяет во многих случаях (для лямбда монотонных целевых функций) сократить количество вычислений и снизить размерность исходной задачи. Разработан численный метод построения лямбда оптимальных решений. Приводится численный пример, в котором показано,что количество лямбда оптимальных решений состоит из одной точки, а множество Парето-оптимальных решений является некоторой кривой, на которой для нахождения оптимального решения необходимо строить эпсилон-сеть.
Киселев В.В. Метод нахождения недоминируемых решений в задачах декомпозиции моделей сложных систем. Математическое моделирование и численные методы, 2022, № 1, с. 129–140.