539.376 Simulation of creep in thin-walled shellsunder variable loads

Butina T. A. (Bauman Moscow State Technical University), Dubrovin V. M. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2022-1-97108

Under prolonged loading during operation, structures are subject to the phenomenon of creep, which can affect its performance. This influence depends on the load level, loading duration, operating conditions, design features, and type of material. All of these factors are taken into account in testing to obtain creep curves for a specific material and various environmental conditions corresponding to the operating conditions of the structure. The paper considers the problem of calculating the creep deformations of thin-walled cylindrical shells under the combined action of internal pressure and axial force. A model of the theory of flow with hardening under variable loading is considered. A numerical example of calculating the creep deformations of a cylindrical shell for an aluminum alloy is given

Kachanov L.M. Teoriya polzuchesti [Creep theory]. Moscow, Fizmatgiz Publ., 1960, 389 p.
Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 2 . Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 2 Universal laws of mechanics and electrodynamics of continuous media]. Moscow, BMSTU Publ., 2011, 559 p.
Dimitrienko Yu.I. Mekhanika sploshnoy sredy. Tom 4 . Osnovy mekhaniki tverdogo tela [Continuum Mechanics. Vol. 4 Fundamentals of solid mechanics]. Moscow, BMSTU Publ., 2013, 624 p.
Rabotnov Yu.N. Polzuchest elementov construkziy [Creep of structural elements]. Moscow, Nauka Publ., 1999, 365 p.
Volmir A.S. Ustoychivost deformiruemix sistem [Stability of deformable systems]. Moscow, Nauka Publ., 1989, 325 p.
Birger I.A., Shorr B.F. Termoprochnost detaley mashin [Thermal strength of machine parts]. Moscow, Mashinostroenie Publ., 1995, 297 p.
Butina T.A., Dubrovin V.M. Modelling of material elastoplastic behavior under impact loading. Science and Education: Electronic Scientific and Technical Journal, 2014, iss. 3. URL: http://engjournal.ru/catalog/mathmodel/solid/1231.html (date of application:01.08.2021)
Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredi [Nonlinear continuum mechanics]. Moscow, Fizmatgiz Publ., 2005, 624 p.
Volmir A.S. , Zykin P.G. Ustoychivost obolochek pri polzuchesti [Stability of shells during creep]. Teplovie napryazheniya v elementakh turbomachine[Thermal stresses in the elements of turbomachines], 1962, iss. 2.
Mileiko S.T., Rabotnov Yu.N. Kratkovremennaya polzuchest [Short-term creep]. Moscow, Mashinostroenie Publ., 1985, 298 p.
Dubrovin V.M., Butina T.A. Simulation of creep process structural materials.Science and Education: Electronic Scientific and Technical Journal, 2013, iss. 9. URL: http://engjournal.ru/eng/catalog/mathmodel/technic/957.html (date of application: 01.08.2021)
Dimitrienko Yu.I., Юрин Ю.В. Finite element simulation of the rock stress-strain state under creep. Mathematical Modeling and Computational Metods, 2015, no. 3, p. 101–118.
Dimitrienko Yu.I., Gubareva E.A., Yurin Yu.V. Asymptotic theory of thermocreep for multilayer thin plates. Mathematical Modeling and Computational Metods, 2014 , no. 4, p. 18–36.
Mushtari Kh.M., Galimov G.Z. Nelineynata teoriya uprugikh obolochek [Nonlinear theory of elastic shells]. Kazan, Tatknigizdat Publ., 1985, 437 p.
Grigolyuk E.I., Lipovtsev Yu.V. Stability of shells under creep conditions. Journal of Applied Mechanics and Technical Physics, 1965, no. 4, p. 111–116.

Бутина Т.А., Дубровин В.М. Моделирования ползучести тонкостенных оболочек при переменных нагружениях. Математическое моделирование и численные методы, 2022, № 1, с. 97–108.

Download article

Количество скачиваний: 79