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Моделирование ползучести тонкостенных оболочек при 

переменных нагружениях  

© Т.А. Бутина, В.М. Дубровин 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 

При длительном нагружении в процессе эксплуатации конструкции подвержены 

явлению ползучести, которое может влиять на ее работоспособность. Это 

влияние зависит от уровня нагрузки, длительности нагружения, условий 

эксплуатации, конструктивных особенностей, вида материала. Все эти факторы 

учитываются при проведении испытаний, позволяющих получить кривые 

ползучести для конкретного материала и различных внешних условий, 

соответствующих условиям эксплуатации конструкции. В работе рассмотрена 

задача расчета деформаций ползучести тонкостенных цилиндрических оболочек 

при совместном действии внутреннего давления и осевой силы. Рассмотрена 

модель теории течения с упрочнением при переменных нагружениях. Приведен  

численный пример расчета деформаций ползучести цилиндрической оболочки для 

алюминиевого сплава.  

 

Ключевые слова: ползучесть, теории течения с упрочнением, цилиндрическая 

оболочка, переменные нагружения 

 

Введение. Все кривые деформирования при ползучести 

получают, как правило, в опытах на растяжение образцов при 

фиксированных напряжениях и температуре. Результаты испытаний 

на ползучесть представляются в виде так называемых кривых 

ползучести, то есть кривых зависимости полной деформации от 

времени [1-4]. Меняя температуру, можно для каждого 

фиксированного значения температуры получить серию таких 

кривых. При использовании их в теоретических расчетах применяют 

модели теории течения, упрочнения, старения и т.д. [3-15]. Целью 

настоящей работы являлась разработка алгоритма решения задач 

теории ползучести тонкостенных оболочек при осесимметричном 

нагружении при переменных нагрузках, с использованием модели 

теории течения с упрочнением. 

Модель расчета деформаций ползучести при одноосном 

нагружении. Пусть в промежутке времени от 0 до 
1t  действовало 

напряжение 
1 , тогда в каждый момент времени от 0 до 

1t  можно 

найти скорость деформации ползучести (рис.1). Если в момент 

времени 
1t  напряжение станет равным 

2 , то не ясно, как далее 

искать скорость деформации ползучести, потому что кривая 

ползучести для напряжения 
2  получена при условии, что весь 
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промежуток времени от 0 до 
1t  действовало напряжение 

2 . Однако, 

эксперименты показывают, что история изменения напряженно-

деформированного состояния существенно влияет на скорость 

деформации ползучести. 

При использовании модели теории течения [4] основным 

фактором, определяющим скорость деформации ползучести, является 

время пребывания под нагрузкой при данной температуре, 

независимо от истории изменения напряжений [6]. 

Если, например, напряжение 
2  действует в течение 

1t  (рис.1), 

то кривой начальной ползучести является кривая 2OB . Затем при 

увеличении напряжения в точке 
2B  от 

2  до 
3  скорость ползучести 

увеличится и станет равной скорости ползучести в точке 3B  на 

кривой 
3 , так что дальнейшее изменение деформации ползучести 

пойдет по линии 
2 3B B . При уменьшении напряжения от 

2  до 
1  

скорость ползучести примет значение, соответствующее точке 1B  на 

кривой 
1 и пойдет по кривой 

2 1B B . Совершенно аналогично 

производится перерасчет скорости ползучести при изменении 

температуры  . Для внутренних точек   и     используется 

интерполяция. 

При использовании модели теории  упрочнения [4] 

предполагается (рис.2), что главным фактором, определяющим 

скорость ползучести, является деформация, независимо от истории 

изменения напряжения, вызывающего соответствующую 

деформацию. Следовательно, в процессе действия ступенчато 

изменяющегося напряжения от 
2  до 

1  соответствующая скорость 

ползучести в точке 
2B  при новом уровне напряжений 

1  (или 
3 ) 

будет равна скорости ползучести в точке 1B  (или 3B ). Точка 1B  (или 

3B ) получена как точка пересечения горизонтальной линии, 

проходящей через точку В2 (постоянная деформация), с кривой 
1  

(или 
3 ). 

В модели теории течения кривые ползучести можно перестроить 

в кривые зависимости скорости ползучести от времени, а в модели 

теории упрочнения - от накопленной деформации ползучести. 

Скорость ползучести определяется с помощью  полученных кривых 

по напряжению, температуре, и времени (или накопленной 

деформации ползучести). 

Модель теории относительной долговечности является 

сочетанием модели теории течения и гипотезы упрочнения. Если 
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напряжение 
2  меняется в точке 

2B  до значения 
1  (или 

3 ), то 

скорость ползучести в точке 
2B  принимается равной скорости 

ползучести в точке 1B  (или 3B ), выбранной из условия, что время, 

соответствующее достижению точки 1B  (или 3B ) составляет ту же 

часть общей долговечности до разрушения при постоянном 

напряжении 
1  (или 

3 ), что и время, соответствующее точке 
2B  

при постоянном напряжении 
2 . Например, если время, 

соответствующее точке 
2B , составляет 1 4  полного времени 

испытания при постоянном напряжении 
2 , то точке 1B  (или 3B ) 

соответствует время, составляющее 1 4  долговечности при 

напряжении 
1  (или 

3 ), то есть 

 31 2

1 2 3

1

4n n n

tt t

t t t
   .  (1) 

Модель расчета деформаций ползучести при сложном 

напряженном состоянии. При сложном напряженном согласно 

общей теории ползучести типа теории течения с упрочнением, 

скорости деформаций ползучести определяются по формулам [3,4,7] 

 
c

c u
ij ij

u

e
e s


 ,  (2) 

  ,c c

u i klje Ф e .  (3) 

где 
c

ije  — девиатор тензора 
c

ij  скоростей деформаций, 
ijs  — девиатор 

тензора напряжений 
ij [8] 

 
11 22 33

1
, .

3
ij ijijs           (4) 

 
11 22 33.

1
,

3

c c

ij i

c c

i

c

j

cc

je           (5) 

а  
u  и c

ue  — интенсивности тензора напряжений и скоростей 

деформаций ползучести [8] 

 

2 2

11 22 33 22

2 2 2 2 1/2

11 33 12 23 13

1
(( ) ( )

3

( ) 6( )) ,

i ju j is s    

    

      

    

  (6) 
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2 2

11 22 11 33

2 2 2 2 1/2

33 22 12 23 13

1
(( ) ( )

3

( ) 6( )) .

c c c

u ij ij

c c c c

c c c c c

e e e    

    

     

    

  (7) 

Функция  , c

ij klФ e  в общем случае зависит от тензоров 

напряжений и деформаций  ползучести. Ее определение является 
достаточно сложной задачей. В теории течения эта функция зависит 

только от 
u , т.е. имеет место функция 

  c

u ue Ф  . (8) 

При переменных напряжениях эта функция может быть получена 
графическим способом из кривых одноосной ползучести (рис. 1,2,3) 

при постоянных 
u .  

В теории упрочнения принимается модель [4] 

 ( , )c c

u u uФe e .  (9) 

При переменных напряжениях эта функция также может быть 
получена из кривых одноосной ползучести (рис. 1,2,3) с 
использованием моделей упрочнения как было описано выше.  

Объемная ползучесть обычно, предполагается пренебрежимо 
малой [4] 

 
11 22 33 0c c c ce e e e    .  (10) 

Упругими деформациями по сравнению с деформациями 
ползучести в рассматриваемых задачах пренебрегают, тогда 

 , .c c c

ij ij ij ije     (11) 

С учетом (10) и (11) соотношения (2), (3)принимают вид 

 11 22 33( , ) ., 0,
c

c cu
ij ij u u u

u

Ф
e

s e e   


    (12) 

Полагая, что за малый промежуток времени ∆𝑡 напряжения и 
скорости деформаций ползучести не меняются, можно записать (12) в 
виде 

 
ij c

ij ij u

u

s
t e


     .  (13) 

Приращение c

ue  можно также получать непосредственно по 

кривым ползучести при одноосном нагружении, из кривых 
ползучести (рис. 1,2,3) с использованием гипотез теории течения, 
упрочнения или относительной долговечности, как было описано выше. 
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Если, например, от 0  до 1t  действовало напряжение 
2   (рис. 

1,2,3), то приращения деформации ползучести следует определять по 

кривой 2AB . Если при 1t t  напряжение скачком меняется до 

значения 1  (или 
3 ), то приращения деформации ползучести 

следует определять по кривой 𝜎1 (или 𝜎3) от точки 1B  (или 3B ) и 

далее. 

При изменяющемся на шаге t  напряженно-деформированном 
состоянии для нахождения приращений деформаций ползучести 
вместо (13) применяется формула, использующая скорости 
ползучести в начале шага и в конце, причем, для уточнения скорости 
ползучести в конце шага используются итерации. 

Если кривые ползучести (рис. 1,2,3) заменить прямыми, то 

скорость ползучести  ,c

u ue    будет зависеть только от напряжения и 

температуры. Это случай установившейся ползучести. Теория 
установившейся ползучести позволяет находить предельное 
распределение напряжений и скоростей деформаций при длительном 
действии постоянных нагрузок как при равномерном, так и при 
неравномерном стационарном температурном поле, когда начальное 
перераспределение напряжений в связи с ползучестью практически 
завершилось [10]. Эта же теория удовлетворительно описывает 
кратковременную ползучесть материалов при больших напряжениях 
[11–13]. 

Применение теории установившейся ползучести значительно 
сокращает количество исходных данных и упрощает их 

использование. Зависимости  ,c

u ue     обычно представляются в виде 

диаграмм (рис. 4) или аппроксимируются степенной или 
показательной функциями. 

 

  
 

Рис. 1. Кривые ползучести при 

различных значениях постоянных 

напряжений согласно теории течения 
 

 
Рис. 2. Кривые ползучести при 

переменных значениях напряжений 
согласно теории упрочнения ползучести 
при различных значениях постоянных 
напряжений согласно теории течения 

1t t t0 0

ce ce

3 3

2 2

1 1

1B 1B

1B 1B

3B 3B3B

3B
2B 2B

1t
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Рис. 3. Кривые  ползучести при 

различных значениях напряжений 

согласно теории относительной 

долговечности 

 

 

Рис. 4. Зависимость суммарной 

деформации от напряжений для разных 

моментов времени 
 

Случай осесимметричного нагружения цилиндрической 

оболочки. В качестве примера рассмотрим задачу расчета 

деформации ползучести цилиндрической, нагруженная осевой силой 

N  и осесимметричным внутренним давлением HP .  Обозначим R  — 

начальный радиус оболочки, а h — ее начальную толщину. Значения 

этих же величин после времени t  нахождения под нагрузкой 

оболочки обозначим как tR , th .   

Тогда напряжения в оболочке в момент времени 𝑡 определяются 

по формулам теории тонкостенных цилиндрических оболочек [14] 

 0r  ,  H t

t

P R

h
  , 

2 2

H t
z

t t t

P R N

hh R



  , (14) 

где 
r ,  , 

z  — напряжения в радиальном, кольцевом и осевом 

направлениях соответственно, а  r ,  , z  — цилиндрические 

координаты, которые соответствуют направлениям 1, 2 и 3, 

соответственно. 

Ненулевые компоненты девиатора напряжений в данном случае, 

согласно (4), имеют вид 

  11

1

3
zs     ,   22

1
2

3
zs    ,  33

1
2

3
zs    . (15) 

Согласно определяющим соотношениям (12) ненулевые  

деформации растяжения-сжатия имеют вид 

 
11 r  ,  22   , 

33 z  . (16) 

а сами соотношения (12) принимают вид 

1t 2t
1t t

t
0

ce
ce

3

2

2

1

1

1

2



1B

1B
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2t
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  2
3

c

u
z

u

e
  


   , 

   2
3

c

u
z

u

z

e
 


   ,  (17) 

  r z     .  

Интенсивности  тензоров напряжений и деформаций в данной 

задаче имеют вид 

 
2 22

3
zu z        ,  (18) 

  
1/2

2 2 21
( ) ( ) ( )

3
r z r z

c

ue             . (19) 

Таким образом, зная напряженно-деформированное состояние в 

оболочке, в которой реализуется осесимметричное напряженно-

деформированное состояние (14), можно по формулам (18) и (3) 

определить интенсивность скорости деформаций ползучести c

ue , а 

затем по формулам (17) определить деформации ползучести в 

некоторый момент времени t , используя кривые ползучести или 

аналитические формулы для получения c

ue . 

При втором подходе общие кривые ползучести перестраиваются 

в изохронные кривые, схема перестроения представлена на рис. 4. 

Полученные зависимости  ,c c

u u ueФe   для фиксированных 

моментов времени 
0 0,  , ,  nt t t  используются для определения 

напряженно-деформированного состояния оболочки в некоторый 

нужный момент времени t . Расчет напряженно-деформированного 

состояния проводится методами решения задач с физической 

нелинейностью, в частности, методом переменных параметров 

упругости [7]. 

Легко видеть, что здесь главным фактором, определяющим 

деформацию, является время нахождения под нагрузкой, как в 

теории старения (часто теорию старения связывают именно с 

методом изохронных кривых). Напряжение и температура должны 

быть постоянными или мало меняться. 

В данном методе не учитывается перераспределение напряжений 

из-за изменения формы конструкции в процессе ползучести. При 

нахождении напряженно-деформированного состояния в некоторый 

момент времени t   предполагается, что в каждой точке оболочки весь 
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промежуток времени от 0  до t  сохранилось свое постоянное 

напряжение. 

Пример численного расчета. В качестве примера оценки 

деформации цилиндрической оболочки в условиях ползучести 

материала рассматривалась оболочка, нагруженная осевой силой 

72 тN   и осесимметричным внутренним давлением 0,18 МПаHP     

Геометрические характеристики оболочки: радиус 1 м, толщина 

оболочки 1,5 мм. Материал оболочки  алюминиевый сплав Д16АТ 

при температуре 150   oС. 

Для функции  ,c c

u u ueФe   принимается следующая  

зависимость согласно [4] 

    , c c

u u u

m

uФ Be e





 ,  (20) 

здесь B , m ,   — коэффициенты в степенном законе зависимости 

скорости деформации ползучести от напряжения. 

С учетом (14) и (18) интенсивность напряжений можно записать 

в виде 

 u K   ,  (21) 

где 
22

1
3

K    ,   z







 . 

Тогда из (17) и (21) будем иметь 

  2
3

c

ue
К

B
   ,  2 1

3
z

c

u

B
e

К
   ,  1

3

c

r ue
К

B
    . (22) 

Подставляя формулу (20) в (9), получаем следующее 

дифференциальное уравнение 

  m

u

c c

u ue eB





 ,  (23) 

интегрируя которое, находим интенсивность деформаций 

ползучести 

 
0

u

c

u

s
t

mB
dte

s


 
  
 
 , 

1

1
s





. (24) 

Для случая постоянных напряжений получаем 

 

s

c

u

s

u

B
t

s
e 

 
  
 

,  /m s  . (25) 
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Пренебрегая начальными упругими деформациями, после 

подстановки (24) в (22), находим деформации для случая переменных 

напряжений 

 

 

 

11

1

0 0

1

2 1(2 )

3 3
 

.
1

3

, ,

s sst ts
m m

s su

s

s

s

z u

r

BB
dt d

Кs
t

B

Кs

К
t

s









   

 











   
   
  


 








 
  (26) 

Для случая постоянных напряжений имеем 

 
 
1

1 2

3

s

s

s

К s

B
t 









 
 ,  

 1

1

2 1

3

s

s

sz
К

B
t

s




 




 
 . (27) 

Результаты расчета деформации ползучести представлены на 

рис. 5. 

 
Рис. 5. Кривые деформаций цилиндрической оболочки в условиях ползучести 

 

Выводы. Предложенный алгоритм позволяет проводить расчет 

напряженно-деформированного состояния элементов конструкций в 

условиях ползучести тонкостенных цилиндрических оболочек при 

комбинированном нагружении: при совместном действии 

внутреннего давления и осевой силы. Алгоритм позволяет проводить 

расчеты ползучести тонкостенных конструкций как при постоянных 

нагрузках, так и для случая переменного нагружения. 
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Simulation of creep in thin-walled shells 

under variable loads 

© T.A. Butina, V.M. Dubrovin 

Bauman Moscow State Technical University, Moscow, 105005, Russia 
 

Under prolonged loading during operation, structures are subject to the phenomenon of 

creep, which can affect its performance. This influence depends on the load level, loading 

duration, operating conditions, design features, and type of material. All of these factors 

are taken into account in testing to obtain creep curves for a specific material and 

various environmental conditions corresponding to the operating conditions of the 

structure. The paper considers the problem of calculating the creep deformations of thin-

walled cylindrical shells under the combined action of internal pressure and axial force. 

A model of the theory of flow with hardening under variable loading is considered. A 

numerical example of calculating the creep deformations of a cylindrical shell for an 

aluminum alloy is given. 

 

Keywords: creep, flow theories with hardening, cylindrical shell, variable loading 
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