doi: 10.18698/2309-3684-2021-3-323
В работе представлена математическая постановка и приведены результаты расчетов в задаче о деформировании металла на литейно-ковочном модуле с измененным приводом боковых бойков. Рассматривается сложная пространственная задача по определению напряженно-деформированного состояния области течения при нагружении внешней нагрузкой, изменяющейся с течением времени. Определяющие соотношения задачи основаны на теории течения. При решении задачи используется апробированный численный метод, а также численные схемы и комплекс программ, использованные ранее при решении подобных задач. В комплексе программ реализован шаговый алгоритм нагружения с учетом истории процесса и изменяющейся геометрии области течения. Малый временной шаг ассоциируется с поворотом эксцентричного вала на угол 10°. Область деформации разбивается на элементы ортогональной системой поверхностей (элементы имеют ортогональную форму). Для каждого элемента записывается в разностном виде сформулированная система уравнений, которая решается по разработанным численным схемам и алгоритмам с учетом начальных и граничных условий. Результатом решения являются поля напряжений и скорости перемещений по пространственной области. Приводится анализ полученных результатов. Делается сравнение с результатами решения действующей конструкции. В качестве деформируемого материала взят свинец, физические свойства которого аппроксимированы аналитической зависимостью по имеющимся экспериментальным данным. Физическая нелинейность системы уравнений реализуется при решении итерационным методом. Проведены локальные расчеты решения задачи на трех вариантах разбиения области на элементы. Обоснован выбор плотности сетки, накладываемой на рассматриваемую область деформации. Результаты решения представлены в графическом виде. Показана эффективность процесса деформации по усовершенствованному способу на новой конструкции литейно-ковочного модуля.
Одиноков В.И., Дмитриев Э.А., Евстигнеев А.И., Потянихин Д.А., Квашнин А.Е. Математическое моделирование процесса деформации металла на литейно-ковочном модуле с измененным приводом боковых бойков. Математическое моделирование и численные методы, 2021, № 3, с. 3–23.
doi: 10.18698/2309-3684-2021-3-2441
В статье рассматривается численная модель течения газа в пористой среде, содержащей частицы реакционноспособного компонента (полимера). При нагреве эти частицы расширяются, деформируются и заполняют порозное пространства, в результате чего проницаемость существенно снижается. Связь между пористостью и проницаемостью описывается формулой Козени-Кармана. Тогда вблизи нижней (входной) границы образуется область с низкой проницаемостью (агломерат), рост которой определяется условиями на боковой и входной границе. В результате расчетов получены характерные сценарии блокировки пористой среды при разных температурах нагрева. Показано, что при нагреве через стенку полимер разлагается, и пористая среда частично восстанавливает проницаемостью При нагреве поступающим газом агломерат намного более устойчив, поскольку он блокирует источник нагрева.
Донской И.Г. Численное моделирование процессов образования, роста и разложения агломератов в пористой среде при разных режимах нагрева. Математическое моделирование и численные методы, 2021, № 3, с. 24–41.
doi: 10.18698/2309-3684-2021-3-4261
Рассматривается сопряженная задача высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в теплозащитных конструкциях возвращаемых космических аппаратов из аблирующих полимерных композиционных материалов. Для определения тепловых потоков в ударном слое возвращаемого аппарата учитывается химический состав атмосферы. Сформулирована математическая постановка сопряженной задачи и предложен алгоритм численного решения. Представлен пример численного решения задачи для возвращаемого космического аппарата Stardust. Показано, что учет химических реакций в потоке газа, обтекающем поверхность возвращаемого аппарата, является существенным для корректного определения температуры газа в пограничном слое. Показано также, что разработанная численная методика решения задачи позволяет определять параметры фазовых превращений в теплозащитной конструкции в зависимости от времени нагрева, в частности позволяет рассчитывать поле порового давления газообразных продуктов терморазложения полимерного композита, которое при определенных условиях может привести к разрушению материала.
Димитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А., Сборщиков С.В., Богданов И.О. Сопряженное моделирование высокоскоростной аэротермодинамики и внутреннего тепломассопереноса в композитных аэрокосмических конструкциях. Математическое моделирование и численные методы, 2021, № 3, с. 42–61.
doi: 10.18698/2309-3684-2021-3-6273
Построена модель генетического алгоритма с бинарным кодированием с независимой селекцией Шеффера, позволяющая производить поиск глобального оптимума по нескольким критериям без их скаляризации. При расчетах учитывается область всех возможных перемещений исполнительных органов в условиях неопределённых внешних воздействий в некотором, заранее заданном, диапазоне. Разработан алгоритм, позволяющий хранить промежуточные результаты для устранения проблемы большого количества повторяющихся расчетов в ходе работы эволюционного алгоритма, что позволило снизить время вычислений. Эффективность работы оптимизационного алгоритма демонстрируется на примере решения модельной задачи.
Бушуев А.Ю., Резников А.О. Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов. Математическое моделирование и численные методы, 2021, № 3, с. 62–73.
doi: 10.18698/2309-3684-2021-3-7487
В данной работе рассматривается оптимизация перелета спутника малой массы с орбиты Земли на орбиту Марса под солнечным парусом. Оптимизация управления углом установки солнечного паруса проводится с использованием принципа максимума Понтрягина при минимизации времени перелета. В отличие от предшествующих работ на эту тему решение краевой задачи, к решению которой сводится принцип максимума, получено методом пристрелки. Программа расчета написана на языке программирования С++. Несмотря на вычислительные сложности, возникающие при использовании метода пристрелки, удалось добиться хорошей сходимости метода Ньютона, лежащего в основе алгоритма. Проведен анализ точности полученных результатов и показана возможность применения метода пристрелки при решении подобных задач. Проведено сравнение с данными ранее опубликованных работ. Несмотря на некоторые допущения, использованные при разработке алгоритма расчета, работа имеет свою ценность в плане оценки возможности использования метода пристрелки, дающего наиболее точные численные результаты оптимизации.
Мозжорина Т.Ю., Рахманкулов Д.А. Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом. Математическое моделирование и численные методы, 2021, № 3, с. 74–87.
004.85:551.5051 Методы интеллектуального анализа данных в модели наукастинга опасных явлений
doi: 10.18698/2309-3684-2021-3-88104
Настоящая работа посвящена исследованию и применению методов интеллектуального анализа для реализации схемы наукастинга опасных явлений. В ходе работы были сформированы большие наборы данных на основе метеорологических наблюдений облачных ячеек, отличающиеся методами обработки информации для их подготовки. Для каждого набора был построен ряд математических моделей классификации облачных ячеек по степени опасности формирования из них смерчей. В качестве основного языка разработки выбран язык программирования Python. Работа имеет большое практическое значение в сфере прогнозирования погодных явлений. Ее новизна заключается в использовании современной методологии машинного обучения вместо традиционного подхода экстраполяции данных, широко применяемого в различных схемах наукастинга.
Шершакова А.О., Пархоменко В.П. Методы интеллектуального анализа данных в модели наукастинга опасных явлений. Математическое моделирование и численные методы, 2021, № 3, с. 88–104.
519.6 Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах
doi: 10.18698/2309-3684-2021-3-105119
Необходимость разработки формализованных компьютерно-ориентированных подходов к проведению междисциплинарных исследований межкультурных взаимодействий является актуальной задачей. В статье описывается подход к разработке агентных моделей межкультурных взаимодействий, основанный на использовании неметризуемых хаусдорфовых пространств с использованием генетических алгоритмов для введения динамических изменений в рассматриваемой структуре культурных агентов. В статье рассматривается прототип агентной модели, в которой состояние агентов описывается в хаусдорфовых пространствах. С помощью выбора опорных точек для каждого агента строится функция Урысона, которая позволяет вводить предпочтения агентов. Далее с помощью технологии генетических алгоритмов, удается получить тактовую динамику изменения всей системы агентов. В статье приводится описание некоторых имитационных экспериментов. Обсуждаются возможные перспективы развития данного подхода.
Белотелов Н.В, Павлов С.А. Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах. Математическое моделирование и численные методы, 2021, № 3, с. 105–119.