Рубрика: "01.01.00 Математика"



531.36:521.1 Моделирование поиска стационарных орбит космической станции в окрестности астероида сжатой формы

Родников А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-3-110118


Предложен численно-аналитический алгоритм поиска стационарных орбит космической станции в окрестности астероида, соответствующих положениям относительного равновесия станции в плоскости, которая образована осями прецессии и собственного вращения астероида, в случае, когда астероид представляется близким к динамически симметричному твердым телом, сжатым вдоль оси динамической симметрии. Алгоритм основан на представлении гравитационного потенциала астероида композицией потенциалов двух комплексно-сопряженных точечных масс и состоит из последовательных замен переменных, сводящих задачу к аналитическому и численному решению алгебраических уравнений. Приведены некоторые факты об эволюции стационарных орбит при изменении угловой скорости прецессии.


Родников А. В. Моделирование поиска стационарных орбит космической станции в окрестности астероида сжатой формы. Математическое моделирование и численные методы, 2016, №3 (11), c. 110-118



517.9+532+536 Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость

Полянин А. Д. (Институт проблем механики им. А.Ю. Ишлинского РАН), Сорокин В. Г. (Институт проблем механики им. А.Ю. Ишлинского РАН), Вязьмин А. В. (Московский государственный машиностроительный университет)


doi: 10.18698/2309-3684-2014-4-5373


Исследованы нелинейные гиперболические реакционно-диффузионные уравнения с переменным коэффициентом переноса при наличии запаздывания. Приведены некоторые точные решения с обобщенным разделением переменных. Большинство рассматриваемых уравнений содержат функциональный произвол. Получены условия глобальной нелинейной неустойчивости решений широкого класса систем гиперболических реакционно-диффузионных уравнений с запаздыванием. Показано, что при выполнении условий неустойчивости задачи с начальными данными и некоторые начально-краевые задачи с запаздыванием являются некорректными по Адамару. Решена обобщенная задача Стокса с периодическим граничным условием, описываемая линейным диффузионным уравнением с запаздыванием.


Полянин А. Д., Сорокин В. Г., Вязьмин А. В. Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость. Математическое моделирование и численные методы, 2014, №4 (4), c. 53-73



519.612.2 Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений

Марчевский И. К. (МГТУ им.Н.Э.Баумана), Пузикова В. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-3752


Для выбора оптимального в смысле вычислительной эффективности итерацион ного метода решения систем линейных алгебраических уравнений, возникающих при дискретизации дифференциальных уравнений в частных производных, помимо скорости сходимости следует учитывать такие характеристики системы и метода, как число обусловленности, коэффициент сглаживания, показатель «затратности». Последние две характеристики вычисляют по коэффициентам усиления гармоник, которые позволяют судить о сглаживающих свойствах итерационного метода и его «затратности», т. е. о том, насколько хуже метод подавляет низкочастотные компоненты ошибки по сравнению с высокочастотными. Предложен способ определения коэффициентов усиления гармоник, основанный на использовании дискретного преобразования Фурье. В качестве примера приведён анализ эффективности метода BiCGStab c ILU и многосеточным предобусловливанием при решении разностных аналогов уравнений Гельмгольца и Пуассона.


Марчевский И. К., Пузикова В. В. Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений. Математическое моделирование и численные методы, 2014, №4 (4), c. 37-52



519.63 Разработка и тестирование методов решения жестких обыкновенных дифференциальных уравнений

Галанин М. П. (Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Ходжаева С. Р. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-95119


Приведены исследования (m,k)-метода, одностадийной комплексной схемы Розенброка, метода конечных суперэлементов и явного четырехстадийного метода Рунге — Кутты применительно к решению жестких систем обыкновенных дифференциальных уравнений. Анализ тестовых расчетов показал, что лучшим выбором для систем с большим числом жесткости является одностадийная комплексная схема Розенброка (CROS). Метод конечных суперэлементов (МКСЭ) является «точным» для решения линейных систем обыкновенных дифференциальных уравнений, лучшим вспомогательным методом для его реализации является (4,2)-метод. Построен и протестирован вариант метода конечных суперэлементов для решения нелинейных задач, оказавшийся непригодным для задач большой жесткости.


Галанин М. П., Ходжаева С. Р. Разработка и тестирование методов решения жестких обыкновенных дифференциальных уравнений. Математическое моделирование и численные методы, 2014, №4 (4), c. 95-119



519.8 «Смешанные» вероятностные модели двусторонних боевых действий многочисленных группировок

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана), Дьякова Л. Н. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-1-91101


Разработаны «смешанные» вероятностные модели двусторонних боевых действий на основе теории непрерывных марковских процессов. Получены расчетные формулы для вычисления основных показателей боя небольших по численности группировок. Разработан численный алгоритм для вычисления основных показателей боя многочисленных группировок. Проведено сравнение с результатами моделирования боя при использовании детерминированной модели двусторонних боевых действий, разработанной на основе метода динамики средних. Показано, что на ошибки метода динамики средних влияет в первую очередь соотношение сил противоборствующих сторон, а не их начальные численности.


Чуев В. Ю., Дубограй И. В., Дьякова Л. Н. «Смешанные» вероятностные модели двусторонних боевых действий многочисленных группировок. Математическое моделирование и численные методы, 2017, №1 (13), c. 91-101



517.9:532:536 Нелинейные реакционно-диффузионные уравнения с запаздыванием и переменными коэффициентами переноса: решения с обобщенным и функциональным разделением переменных

Полянин А. Д. (Институт проблем механики им. А.Ю. Ишлинского РАН), Журов А. И. (Cardiff University/Институт проблем механики им. А.Ю. Ишлинского РАН)


doi: 10.18698/2309-3684-2015-4-337


Описан ряд новых точных решений с простым, обобщенным и функциональным разделениями переменных одномерных нелинейных реакционно-диффузионных уравнений с запаздывающим аргументом и переменными коэффициентами переноса. Все представленные уравнения содержат одну, две или три произвольные функции одного аргумента. Решения с обобщенным разделением переменных находят в виде , где функции определяют в ходе анализа с использованием новой модификации метода функциональных связей. Некоторые из результатов обобщены на случай нелинейных реакционно-диффузионных уравнений с переменным запаздыванием. Также представлены точные решения более сложных трехмерных реакционно-диффузионных уравнений с запаздыванием. Большинство полученных решений содержат свободные параметры и могут быть использованы для решения некоторых задач, а также для тестирования приближенных аналитических и численных методов решения нелинейных уравнений в частных производных с запаздыванием.


Полянин А. Д., Журов А. И. Нелинейные реакционно-диффузионные уравнения с запаздыванием и переменными коэффициентами переноса: решения с обобщенным и функциональным разделением переменных. Математическое моделирование и численные методы, 2015, №4 (8), c. 3-37



551.513 Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы

Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2016-3-93109


Представлен анализ некоторых факторов, влияющих на выполнение параллельной реализации модели общей циркуляции атмосферы на многопроцессорной электронно-вычислительной машине кластерного типа. Рассмотрены несколько модификаций первоначального параллельного кода этой модели, направленных на улучшение его вычислительной эффективности, баланса загрузки процессоров. Осуществлена модификация численной схемы по времени модели общей циркуляции атмосферы для возможности осуществления параллельных расчетов блоков динамики и физики. Предлагаемая процедура используется вместе с процедурами распараллеливания блоков динамики и физики на основе декомпозиции расчетной области, что позволяет оптимизировать загрузку процессоров и повысить эффективность распараллеливания. Результаты применения схемы баланса загрузки блока физики рассмотренной модели дают возможность усложнения блока физики без увеличения общего времени счета. Приведены результаты численных экспериментов.


Пархоменко В. П. Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы. Математическое моделирование и численные методы, 2016, №3 (11), c. 93-109



519.248 Проверка справедливости модели Кокса по нескольким прогрессивно цензурированным выборкам

Тимонин В. И. (МГТУ им.Н.Э.Баумана), Тянникова Н. Д. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-1-102117


Предложен непараметрический критерий типа Кифера — Гихмана для проверки справедливости модели Кокса по нескольким прогрессивно цензурированным выборкам. По каждой из выборок в качестве оценок функции надежности использованы оценки Каплана — Мейера. Доказано, что при справедливости гипотезы в качестве приближения асимптотического распределения статистики критерия может быть применено распределение Кифера — Гихмана. Разработан метод вычисления точных распределений статистики на основе модели случайного блуждания частицы по многомерному массиву ячеек. Приведены таблицы полученных значений вероятностей точных распределений предложенной статистики для широкого набора возможных значений объемов выборок. Методами статистического моделирования показана состоятельность метода оценки параметров Кокса, основанного на минимизации статистики. Представлены гистограммы полученных оценок для экспоненциального распределения наработок до отказа. Результаты исследования находят применение при анализе результатов испытаний резервированных технических систем различной кратности, функционирующих в различных условиях эксплуатации.
Анализируемые системы используются во всех отраслях — от машиностроительных до радиоэлектронных.


Тимонин В. И., Тянникова Н. Д. Проверка справедливости модели Кокса по нескольким прогрессивно цензурированным выборкам. Математическое моделирование и численные методы, 2017, №1 (13), c. 102-117



681.513.5 Стабилизация неустойчивого предельного цикла релейной хаотической системы

Краснощеченко В. И. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-2-87104


В работе представлен алгоритм синтеза для стабилизации неустойчивого предельного цикла релейной хаотической системы. В алгоритме используется одномерное дис-кретное отображение Пуанкаре для нахождения неподвижных точек периода (предельных циклов исходной непрерывной системы). Показано, что классический метод OGY синтеза апериодического регулятора не решает поставленной задачи, так как учитывает только скорость выходной координаты, что недостаточно для стабилизации. Предложенный алгоритм основан на поиске необходимого коэффициента регулятора путем решения обратной задачи: сначала задается некоторый коэффициент, а затем осуществляется двухэтапная процедура (с коррекцией) перехода системы в следующую точку переключения. Задача коррекции осуществляется в полной окрестности (положения и скорости выходной координаты) и обеспечивает стабилизацию предельного цикла корректирующими импульсами малой амплитуды в вы-бранной области начальных условий (области стабилизации), о чем свидетельствуют приведенные результаты моделирования.


Краснощеченко В. И. Стабилизация неустойчивого предельного цикла релейной хаотической системы. Математическое моделирование и численные методы, 2015, №2 (6), c. 87-104



1>>