Рубрика: "01.01.00 Математика"



551.048 Моделирование влияния оттока в залив Кара-Богаз-Гол на плотность распределения вероятности уровня Каспийского моря

Фролов А. В. (Институт водных проблем РАН)


doi: 10.18698/2309-3684-2016-3-7992


Рассмотрены многолетние колебания уровня Каспийского моря как выходного процесса нелинейной системы, обладающей положительной и отрицательными обратными связями. Предложена модель Каспийского моря, учитывающая отток морской воды в залив Кара-Богаз-Гол. Получена плотность распределения уровня моря в виде решения соответствующего уравнения Фоккера — Планка — Колмогорова. Показано, что бимодальная плотность распределения вероятности уровня моря, отвечающая бессточному Каспию (при отсеченном заливе Кара-Богаз-Гол), переходит в одномодальную в случае одновременного действия зависимостей испарения и оттока морской воды в залив Кара-Богаз-Гол от уровня моря.


Фролов А. В. Моделирование влияния оттока в залив Кара-Богаз-Гол на плотность распределения вероятности уровня Каспийского моря. Математическое моделирование и численные методы, 2016, №3 (11), c. 79-92



519.8 Стохастические модели дуэльного боя двух единиц

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-6984


На основе теории непрерывных марковских процессов разработаны модели дуэльного боя двух единиц. Получены расчетные формулы для вычисления основных показателей боя. Установлено, что упреждающий удар одной из участвующих в бою единиц оказывает существенное влияние на исход боя близких по силам единиц и незначительное влияние, если одна из единиц имеет значительное превосходство. Показано, что использование модели с постоянными эффективными скорострельностями может привести к существенным ошибкам при оценке его результатов. Установлено, что упреждающий удар в совокупности с более высокой степенью роста эффективной скорострельности может в отдельных случаях компенсировать более чем двукратное начальное превосходство противника. Показана возможность использования аппроксимаций эффективных скорострельностей боевых единиц различными функциями времени боя.


Чуев В. Ю., Дубограй И. В. Стохастические модели дуэльного боя двух единиц. Математическое моделирование и численные методы, 2016, №2 (10), c. 69-84



519.862.6 Аналитические зависимости между коэффициентами детерминации и соотношением дисперсий ошибок исследуемых признаков в модели регрессии Деминга

Базилевский М. П. (Иркутский государственный университет путей сообщения)


doi: 10.18698/2309-3684-2016-2-104116


Рассмотрена проблема построения регрессионных моделей, в которых все переменные имеют стохастический характер. Для ее решения предложено использовать коэффициент детерминации. Получены аналитические зависимости коэффициентов детерминации от соотношения дисперсий ошибок исследуемых признаков. Поставлена оптимизационная задача, предполагающая максимизацию суммы коэффициентов детерминации каждого уравнения в регрессии Деминга. Дан модельный пример численной обработки регрессии Деминга с ее известными параметрами и ошибками признаков.


Базилевский М. П. Аналитические зависимости между коэффициентами детерминации и соотношением дисперсий ошибок исследуемых признаков в модели регрессии Деминга. Математическое моделирование и численные методы, 2016, №2 (10), c. 104-116



536.24 Параметрическая идентификация математической модели теплообменного процесса для тонкостенных криволинейных оболочек турбомашин

Андрианов И. К. (Комсомольский-на-Амуре государственный технический университет), Гринкруг М. С. (Комсомольский-на-Амуре государственный технический университет)


doi: 10.18698/2309-3684-2016-2-2438


Рассмотрена математическая модель теплообменного процесса, протекающего в тонкостенных криволинейных оболочках турбомашин. Предложен алгоритм расчета теплового состояния на граничных поверхностях оболочки и покрытия согласно требуемому тепловому условию. Представлены результаты расчета распределения температур при заданном температурном поле на наиболее термонагруженной поверхности оболочки в результате теплового воздействия.


Андрианов И. К., Гринкруг М. С. Параметрическая идентификация математической модели теплообменного процесса для тонкостенных криволинейных оболочек турбомашин. Математическое моделирование и численные методы, 2016, №2 (10), c. 24-38



519.612.2 Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений

Марчевский И. К. (МГТУ им.Н.Э.Баумана), Пузикова В. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-3752


Для выбора оптимального в смысле вычислительной эффективности итерацион ного метода решения систем линейных алгебраических уравнений, возникающих при дискретизации дифференциальных уравнений в частных производных, помимо скорости сходимости следует учитывать такие характеристики системы и метода, как число обусловленности, коэффициент сглаживания, показатель «затратности». Последние две характеристики вычисляют по коэффициентам усиления гармоник, которые позволяют судить о сглаживающих свойствах итерационного метода и его «затратности», т. е. о том, насколько хуже метод подавляет низкочастотные компоненты ошибки по сравнению с высокочастотными. Предложен способ определения коэффициентов усиления гармоник, основанный на использовании дискретного преобразования Фурье. В качестве примера приведён анализ эффективности метода BiCGStab c ILU и многосеточным предобусловливанием при решении разностных аналогов уравнений Гельмгольца и Пуассона.


Марчевский И. К., Пузикова В. В. Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений. Математическое моделирование и численные методы, 2014, №4 (4), c. 37-52



551.513 Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы

Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2016-3-93109


Представлен анализ некоторых факторов, влияющих на выполнение параллельной реализации модели общей циркуляции атмосферы на многопроцессорной электронно-вычислительной машине кластерного типа. Рассмотрены несколько модификаций первоначального параллельного кода этой модели, направленных на улучшение его вычислительной эффективности, баланса загрузки процессоров. Осуществлена модификация численной схемы по времени модели общей циркуляции атмосферы для возможности осуществления параллельных расчетов блоков динамики и физики. Предлагаемая процедура используется вместе с процедурами распараллеливания блоков динамики и физики на основе декомпозиции расчетной области, что позволяет оптимизировать загрузку процессоров и повысить эффективность распараллеливания. Результаты применения схемы баланса загрузки блока физики рассмотренной модели дают возможность усложнения блока физики без увеличения общего времени счета. Приведены результаты численных экспериментов.


Пархоменко В. П. Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы. Математическое моделирование и численные методы, 2016, №3 (11), c. 93-109



517.9:519.6 Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки

Малинецкий Г. Г. (Институт прикладной математики им. М.В. Келдыша РАН), Фаллер Д. С. (Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2014-3-111125


Рассмотрено появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории моделей «реакция — диффузия». Исследованы динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.


Малинецкий Г. Г., Фаллер Д. С. Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки. Математическое моделирование и численные методы, 2014, №3 (3), c. 111-125



519.6 Применение гибридных алгоритмов к экстремальным задачам на собственные значения лагранжевых динамических систем

Сулимов В. Д. (МГТУ им.Н.Э.Баумана), Шкапов П. М. (МГТУ им.Н.Э.Баумана), Гончаров Д. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-84102


Рассмотрены экстремальные задачи для составляющих собственных спектров лагранжевых динамических систем. Математические модели исследуемых систем описаны матрицами, зависящими от параметров. Задачи на собственные значения, формулируемые для таких систем, в общем случае характеризуются спектрами, которые могут содержать кратные собственные значения. Частные критерии в экстремальных задачах предполагаются непрерывными, липшицевыми, многоэкстремальными и, возможно, не всюду дифференцируемыми функциями. Поиск глобальных решений проведен с использованием новых гибридных алгоритмов, объединяющих стохастический алгоритм сканирования пространства переменных и детерминированные методы локального поиска. Приведены численные примеры решения задач глобальной недифференцируемой минимизации максимальных собственных значений систем.


Сулимов В. Д., Шкапов П. М., Гончаров Д. А. Применение гибридных алгоритмов к экстремальным задачам на собственные значения лагранжевых динамических систем. Математическое моделирование и численные методы, 2016, №4 (12), c. 84-102



517.9+532+536 Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость

Полянин А. Д. (Институт проблем механики им. А.Ю. Ишлинского РАН), Сорокин В. Г. (Институт проблем механики им. А.Ю. Ишлинского РАН), Вязьмин А. В. (Московский государственный машиностроительный университет)


doi: 10.18698/2309-3684-2014-4-5373


Исследованы нелинейные гиперболические реакционно-диффузионные уравнения с переменным коэффициентом переноса при наличии запаздывания. Приведены некоторые точные решения с обобщенным разделением переменных. Большинство рассматриваемых уравнений содержат функциональный произвол. Получены условия глобальной нелинейной неустойчивости решений широкого класса систем гиперболических реакционно-диффузионных уравнений с запаздыванием. Показано, что при выполнении условий неустойчивости задачи с начальными данными и некоторые начально-краевые задачи с запаздыванием являются некорректными по Адамару. Решена обобщенная задача Стокса с периодическим граничным условием, описываемая линейным диффузионным уравнением с запаздыванием.


Полянин А. Д., Сорокин В. Г., Вязьмин А. В. Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость. Математическое моделирование и численные методы, 2014, №4 (4), c. 53-73



1>>