517.9+532+536 Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability

Polyanin A. D. (Bauman Moscow State Technical University/Ishlinsky Institute for Problems in Mechanics), Sorokin V. G. (Bauman Moscow State Technical University), Vyazmin A. V. (Moscow State University of Mechanical Engineering)

REACTION-DIFFUSION EQUATIONS, NONLINEAR DELAY DIFFERENTIAL EQUATIONS, EXACT SOLUTIONS, GENERALIZED SEPARATION OF VARIABLES, NONLINEAR INSTABILITY, GLOBAL INSTABILITY.


doi: 10.18698/2309-3684-2014-4-5373


In the article we explored nonlinear hyperbolic delay reaction-diffusion equations with varying transfer coefficients. A number of generalized separable solutions were obtained. Most of the equations considered contain arbitrary functions. Global nonlinear instability conditions of solutions of hyperbolic delay reaction-diffusion systems were determined. The generalized Stokes problem for a linear delay diffusion equation with periodic boundary conditions was solved.


[1] Lykov A.V. Heat Conduction Theory. Moscow, Vysshaya Shkola Publ., 1967, 600 p.
[2] Kutateladze S.S. Fundamentals of Heat Transfer Theory. Moscow, Atomizdat Publ., 1979, 416 p.
[3] Polyanin A.D., Kutepov A.M., Vyazmin A.V., Kazenin D.A. Hydrodynamics, mass and heat transfer in chemical engineering. London, Taylor & Francis, 2002, 387 p.
[4] Cattaneo C. . Comptes Rendus, 1958, vol. 247, pp. 431–433.
[5] Vernotte P. . Comptes Rendus, 1961, vol. 252, pp. 2190–2191.
[6] Polyanin A.D., Vyazmin A.V., Zhurov A.I., Kazenin D.A. Handbook of Exact Solutions to the Equations of Heat and Mass Transfer. Moscow, Faktorial Publ., 1998, 368 p.
[7] Wu J. Theory and applications of partial functional differential equations. New York, Springer, 1996, 119 p.
[8] Wu J., Zou X. J. Dynamics & Dif. Equations, 2001, vol. 13, no. 3, pp. 651–687.
[9] Faria T., Trofimchuk S. J. Dif. Equations, 2006, vol. 228, pp. 357–376.
[10] Smith H.L. An introduction to delay differential equations with applications to the life sciences. New York, Springer, 2010, 182 p.
[11] Polyanin A.D., Zhurov A.I. Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, pp. 409–416.
[12] Kyrychko Y.N. Hogan S.J. Journal of Vibration and Control, 2010, vol. 16, no. 7–8, pp. 943–960.
[13] Polyanin A.D., Zhurov A.I. Int. J. Non-Linear Mechanics, 2013, vol. 54, pp. 115–126.
[14] Polyanin A.D., Zhurov A.I. Int. J. Non-Linear Mechanics, 2014, vol. 59, pp. 16–22.
[15] Polyanin A.D., Vyazmin A.V. Theoretical Foundation of Chemical Engineering, 2013, vol. 47, no. 3, pp. 217–224.
[16] Polyanin A.D., Vyazmin A.V. . Chemistry and Chemical Technology Research-Engineering Journal, 2013, vol. 56 (9), pp. 102–108.
[17] Polyanin A.D., Zhurov A.I. . Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, no. 8, pp. 2676–2689.
[18] Polyanin A.D., Sorokin V.G. Bulletin of National Research Nuclear University (MIFI), 2014, vol. 3, no. 2, pp. 141–148.
[19] Polyanin A.D., Vyazmin A.V. Theoretical Foundation of Chemical Engineering, 2013, vol. 47, no. 4, pp. 321–329.
[20] Polyanin A.D., Zhurov A.I. J. Math. Anal. Appl., 2015, in print.
[21] Polyanin A.D., Zhurov A.I. Applied Mathematics Letters, 2014, vol. 37, pp. 43–48.
[22] Smith H. L., Zhao X.-Q. SIAM J. Math. Anal., 2000, vol. 31, pp. 514–534.
[23] Mei M., So J., Li M., Shen S. Proc. Roy. Soc. Edinburgh Sect. A, 2004, vol. 134, pp. 579–594.
[24] Polyanin A.D. Inzhenernyi zhurnal: nauka i innovatsii. Engineering Journal: Science and Innovation, 2013, no. 4(16). Available at: http://engjournal.ru/articles/662/662.pdf
[25] Polyanin A.D., Zhurov A.I. Int. J. Non-Linear Mechanics, 2014, vol. 62, pp. 33–40.
[26] Bellman R., Cooke K.L. Differential-Difference Equations. New York, Academic, 1963, 480 p.
[27] Driver R.D. Ordinary and delay differential equations. New York, Springer, 1977, 505 p.
[28] Kuang Y. Delay differential equations with applications in population dynamics. Boston, Academic Press, 1993, 398 p.
[29] Cui B.T., Yu Y.H., Lin S.Z. Acta Math. Appl. Sinica, 1996, vol. 19, pp. 80–88.
[30] Wang J., Meng F., Liu S. J. Comp. & Appl. Math., 2008, vol. 212, no. 2, pp. 397–405.
[31] Cui S., Xu Z. Dif. Equations & Appl., 2009, vol. 1, no. 3, pp. 379–391.
[32] Jackiewicza Z., Zubik-Kowal B. Applied Numerical Mathematics, 2006, vol. 56, no. 3–4, pp. 433–443.
[33] Zhang Q., Zhang C. Applied Mathematics Letters, 2013, vol. 26, no. 2, pp. 306–312.
[34] Polyanin A.D., Zaitsev V.F. Handbook of nonlinear partial differential equations. 2nd edition, Boca Raton, Chapman & Hall / CRC Press, 2012, 1912 p.
[35] Galaktionov V.A. , Svirshchevskii S.R. Exact solutions and invariant subspaces of nonlinear partial differential equations in mechanics and physics, Boca Raton, Chapman & Hall/CRC Press, 2007, 498 p.
[36] Pucci E., Saccomandi G. Physica D: Nonlinear Phenomena, 2000, vol. 139, pp. 28–47.
[37] Polyanin A.D., Zhurov A.I. Communications in Nonlinear Science and Numerical Simulation, 2014, vol. 19, no. 3, pp. 417–430.


Polyanin A., Sorokin V., Vyazmin A. Nonlinear delay reaction-diffusion equations of hyperbolic type: Exact solutions and global instability. Маthematical Modeling and Coтputational Methods, 2014, №4 (4), pp. 53-73



Download article

Колличество скачиваний: 182