Павел Михайлович Шкапов (МГТУ им. Н.Э. Баумана; ) :


Статьи:

519.6:532.529.5 Гибридные методы вычислительной диагностики двухфазного потока в циркуляционном контуре

Сулимов В.Д.(МГТУ им. Н.Э. Баумана), Шкапов П.М.(МГТУ им. Н.Э. Баумана)


doi: 10.18698/2309-3684-2015-3-6888


Рассмотрены задачи вычислительной диагностики потока теплоносителя в замкнутом циркуляционном контуре. Разработаны математические модели акустических колебаний в двухфазном потоке. Использована косвенная диагностическая информация, которую содержат спектры колебаний потока, регистрируемые штатными системами. Сформулирована обратная задача на собственные значения, при решении которой реализован оптимизационный подход. Предполагается, что частные критерии представлены непрерывными, липшицевыми, не всюду дифференцируемыми, многоэкстремальными функциями. Поиск глобальных решений проведен с использованием новых гибридных алгоритмов, интегрирующих стохастический алгоритм сканирования пространства переменных и детерминированные методы локального поиска. Приведен численный пример модельного диагностирования фазового состава теплоносителя в циркуляционном контуре ядерной реакторной установки.


Сулимов В. Д., Шкапов П. М. Гибридные методы вычислительной диагностики двухфазного потока в циркуляционном контуре. Математическое моделирование и численные методы, 2015, №3 (7), c. 68-88



519.6 Применение гибридных алгоритмов к экстремальным задачам на собственные значения лагранжевых динамических систем

Сулимов В.Д.(МГТУ им. Н.Э. Баумана), Шкапов П.М.(МГТУ им. Н.Э. Баумана), Гончаров Д.А.(МГТУ им. Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-84102


Рассмотрены экстремальные задачи для составляющих собственных спектров лагранжевых динамических систем. Математические модели исследуемых систем описаны матрицами, зависящими от параметров. Задачи на собственные значения, формулируемые для таких систем, в общем случае характеризуются спектрами, которые могут содержать кратные собственные значения. Частные критерии в экстремальных задачах предполагаются непрерывными, липшицевыми, многоэкстремальными и, возможно, не всюду дифференцируемыми функциями. Поиск глобальных решений проведен с использованием новых гибридных алгоритмов, объединяющих стохастический алгоритм сканирования пространства переменных и детерминированные методы локального поиска. Приведены численные примеры решения задач глобальной недифференцируемой минимизации максимальных собственных значений систем.


Сулимов В. Д., Шкапов П. М., Гончаров Д. А. Применение гибридных алгоритмов к экстремальным задачам на собственные значения лагранжевых динамических систем. Математическое моделирование и численные методы, 2016, №4 (12), c. 84-102