Рубрика: "01.02.00 Механика"



519.6:533.6 Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Коряков М. Н. (МГТУ им.Н.Э.Баумана), Захаров А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-7591


Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta discontinuous Galerkin) для численного интегрирования трехмерной системы уравнений идеального газа на неструктурированных сетках. Проведено решение двух тестовых задач с помощью представленного алгоритма. Для каждой задачи приведено сравнение с известными аналитическими решениями или же с табличными данными. Дана оценка погрешности решения.


Димитриенко Ю. И., Коряков М. Н., Захаров А. А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, №4 (8), c. 75-91



534.142:536.24+621.63 Моделирование автоколебаний напорного движения газа, возбуждаемых теплоподводом

Басок Б. И. (Институт технической теплофизики НАН Украины), Гоцуленко В. В. (Институт технической теплофизики НАН Украины)


doi: 10.18698/2309-3684-2016-4-1733


Получена математическая модель для определения параметров продольных автоколебаний, самовозбуждающихся в напорном движении газа при локальном теплоподводе к потоку. Установлено, что при определенных условиях подвод теплоты к газу изменяет гидравлические характеристики течения, порождая эффект «отрицательного» сопротивления. В этом случае возбуждение автоколебаний возможно даже при монотонно убывающей напорной характеристике нагнетателя.


Басок Б. И., Гоцуленко В. В. Моделирование автоколебаний напорного движения газа, возбуждаемых теплоподводом. Математическое моделирование и численные методы, 2016, №4 (12), c. 17-33



539.3 Моделирование динамической устойчивости цилиндрической оболочки при действии осевой сжимающей нагрузки

Дубровин В. М. (МГТУ им.Н.Э.Баумана), Бутина Т. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-2-4657


Предложен метод расчета динамической устойчивости цилиндрической оболочки при нагружении осевой сжимающей нагрузкой, изменяющейся во времени. В каче-стве примера рассмотрен случай, когда нагрузка меняется по линейному закону


Дубровин В. М., Бутина Т. А. Моделирование динамической устойчивости цилиндрической оболочки при действии осевой сжимающей нагрузки. Математическое моделирование и численные методы, 2015, №2 (6), c. 46-57



537.8+519.63 Моделирование электромагнитных эффектов в сложных конструкциях при воздействии импульсных излучений

Березин А. В. (Институт прикладной математики им. М.В. Келдыша РАН), Жуков Д. А., Жуковский М. Е. (Институт прикладной математики им. М.В. Келдыша РАН), Конюков В. В., Крайнюков В. И., Марков М. Б. (Институт прикладной математики им. М.В. Келдыша РАН), Помазан Ю. В. (Cекция прикладных проблем при Президиуме), Потапенко А. И. (12-й Центральный научно-исследовательский институт МО РФ)


doi: 10.18698/2309-3684-2015-2-5872


Представлена математическая модель переноса фотонов и генерации ими вто-ричных электромагнитных полей в конструкции сложной геометрической формы и упаковки. Приведен эскизный чертеж модельной конструкции изделия. Пред-ставлены результаты расчетов потока фотонов в различных элементах конст-рукции модельного изделия. Показано, что пакет материалов корпуса изделия может резко ослаблять поток фотонов, рассеивая не только мягкие, но и жест-кие кванты, причем интенсивность поглощения имеет ярко выраженные макси-мумы. В газовой среде внутри изделия образуется объемный заряд и электроста-тическое поле. При этом в малой пространственной области внутри корпуса изделия электрическое поле может достигать большой амплитуды


Березин А. В., Жуков Д. А., Жуковский М. Е., Конюков В. В., Крайнюков В. И., Марков М. Б., Помазан Ю. В., Потапенко А. И. Моделирование электромагнитных эффектов в сложных конструкциях при воздействии импульсных излучений. Математическое моделирование и численные методы, 2015, №2 (6), c. 58-72



539.3 Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Федонюк Н. Н. (ФГУП «Крыловский государственный научный центр»)


doi: 10.18698/2309-3684-2016-3-323


Разработана многоуровневая модель для многомасштабного деформирования трехслойных (сэндвичевых) конструкций из полимерных композиционных материалов типа пластин с заполнителем на основе пенопласта, учитывающая микромеханические процессы деформирования и повреждаемости матрицы, армирующего наполнителя и пенопласта, а также макроскопические дефекты типа непропитки композитных обшивок. Проведено конечно-элементное моделирование напряженно-деформированного состояния, повреждаемости и разрушения трехслойных пластин с обшивками из гибридных композитов из углепластика, с различными размерами дефекта типа непропитки, при изгибе равномерным давлением. Установлены особенности процесса деформирования и повреждаемости данного типа композитных конструкций. Разработанная методика может быть применена для расчета деформирования, повреждаемости и разрушения трехслойных пластин из полимерных композиционных материалов, применяемых в различных отраслях промышленности: судостроении, авиастроении, ракетостроении.


Димитриенко Ю. И., Юрин Ю. В., Федонюк Н. Н. Численное моделирование деформирования и прочности трехслойных композитных конструкций с дефектами. Математическое моделирование и численные методы, 2016, №3 (11), c. 3-23



539.3 Коротковолновые асимптотики дисперсионных соотношений в случае симметричной трехслойной пластины

Лашаб М. И. (Университет Аласмария), Роджерсон Г. Э. (Кильский университет), Сэндифорд К. Д. (Солфордский университет)


doi: 10.18698/2309-3684-2015-1-5066


В статье рассмотрены дисперсионные волновые процессы в симметричной трехслойной пластине. Каждый из слоев пластины предполагается упругим и изотропным. Приведен численный и асимптотический анализ дисперсионного соотношения. Построенные численные решения дисперсионного соотношения анализируются в коротковолновой области, с выводом соответствующих асимптотик. Полученные приближенные решения сравниваются с точными решениями, демонстрируя весьма широкую область применимости, значительно превосходящую ожидаемую. Полученные асимптотические решения могут найти применение в оценках погрешности при вычислении интегралов по волновому числу, в связи с чем представляется возможным развитие соответствующих гибридных численно-асимптотических методов для нестационарных волновых полей, возникающих при ударных воздействиях.


Лашаб М. И., Роджерсон Г. Э., Сэндифорд К. Д. Коротковолновые асимптотики дисперсионных соотношений в случае симметричной трехслойной пластины. Математическое моделирование и численные методы, 2015, №1 (5), c. 50-66



539.3 Асимптотическая теория термоползучести многослойных тонких пластин

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-1836


Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.


Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36



517.1:539.434 Механический аналог, моделирующий процессы неупругого неизотермического деформирования

Зарубин В. С. (МГТУ им.Н.Э.Баумана), Кувыркин Г. Н. (МГТУ им.Н.Э.Баумана), Савельева И. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-2538


Представлен механический аналог, позволяющий на качественном и количественном уровнях описать основные особенности неупругого деформирования конструкционного материала при переменных температурах. Аналог построен с использованием физических представлений о микроструктуре поликристаллических конструкционных материалов и микромеханизме процесса их деформирования в сочетании с известными положениями феноменологических теорий пластичности и ползучести. Применительно к конкретным режимам теплового и механического воздействий на теплонапряженную конструкцию такой подход позволяет выбрать рациональный вариант модели конструкционного материала, достаточно полно описывающий наиболее существенные эффекты, характерные для процесса неупругого неизотермического деформирования. Разработан один из вариантов такой модели при одноосном нагружении материала и приведен пример подбора числовых значений ее параметров.


Зарубин В. С., Кувыркин Г. Н., Савельева И. Ю. Механический аналог, моделирующий процессы неупругого неизотермического деформирования. Математическое моделирование и численные методы, 2014, №3 (3), c. 25-38



539.3 Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-3656


Предложена теория тонких конструктивно-ортотропных пластин, обладающих двухпериодической структурой, примером которых являются сотовые многослойные панели и подкрепленные пластины. Теория построена на основе уравнений об-щей трехмерной теории упругости путем с помощью асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения напряжений во всех конструктивных элементах пластины. Показано, что полученные глобальные (осредненные по определенным правилам) уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием третьего порядка производных от продольных перемещений. Предложенный метод позволяет вычислить все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить локальные задачи до третьего приближения включительно. Приведен пример конечно-элементного решения локальных задач нулевого приближения для сотовой конструкции, который показал, что разработанный метод расчета пластин и его численная реализация достаточно эффективны, они позволяют проводить расчеты для сложных конструктивно-ортотропных пластин с сильно различающимися значениями упругих характеристик.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, №1 (1), c. 36-56



1>>