Рубрика: "01.02.00 Механика"



539.3+519.86 Многомасштабное моделирование упругопластических композитов с учетом повреждаемости

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-323


Предложена модель деформирования упругопластических композиционных материалов периодической структуры с учетом повреждаемости фаз композита, основанная на варианте деформационной теории пластичности при активном нагружении. Для моделирования эффективных характеристик упругопластических композитов применен метод асимптотической гомогенизации периодических структур. Для численного решения локальных задач упругопластичности с учетом повреждаемости на ячейке периодичности предложен вариант итерационного метода линеаризации, а для численного решения линеаризованных задач на ячейке периодичности — метод конечных элементов с использованием программной среды SMCM, разработанной в Научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» (СИМПЛЕКС) МГТУ им. Н.Э. Баумана. Приведены примеры численных расчетов для дисперсно-армированного металлокомпозита (алюминиевой матрицы, наполненной частицами SiC). Представлены результаты численного моделирования процессов деформирования, накопления повреждений и разрушения металлокомпозита.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Многомасштабное моделирование упругопластических композитов с учетом повреждаемости. Математическое моделирование и численные методы, 2016, №2 (10), c. 3-23



537.876.4:517.958 Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения

Апельцин В. Ф. (МГТУ им.Н.Э.Баумана), Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-327


Рассмотрена двумерная краевая задача о прохождении плоской электромагнитной волны через периодическую слоистую среду, имеющую структуру одномерного фотонного кристалла. Структура имеет конечное число плоскопараллельных слоев, в которой каждая ячейка периодичности состоит из двух слоев с разными действительными значениями постоянной диэлектрической проницаемости и разными толщинами. Показано, что при некотором дополнительном условии, связывающем угол падения плоской волны, толщины слоев, частоту и диэлектрические проницаемости слоев, задача решается до конца в явном виде и приводит к простым выражениям для отраженного от структуры и прошедшего сквозь нее волновых полей. При этом в случае Н-поляризованного поля, в отличие от случая Е-поляризации, свойства данной среды зависят от отношения толщин слоев, умноженных на их диэлектрические проницаемости (при Е-поляризации — только от отношения толщин). В результате фотонный кристалл в зависимости от частоты поля может вести себя как идеально отражающая структура при тех же отношениях толщин слоев, при которых в случае Е-поляризации он становится волноведущей структурой, и наоборот. Произведено сравнение численных расчетов со случаем Е-поляризации.


Апельцин В. Ф., Мозжорина Т. Ю. Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения . Математическое моделирование и численные методы, 2014, №2 (2), c. 3-27



532.58 Моделирование волнового воздействия на горизонтальные элементы конструкций в верхнем слое стратифицированного течения

Владимиров И. Ю. (Институт океанологии им. П.П. Ширшова РАН), Корчагин Н. Н. (Институт океанологии им. П.П. Ширшова РАН), Савин А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-7487


Проведены модельные исследования силового воздействия на обтекаемые горизонтальные элементы инженерных сооружений в верхнем слое резко стратифицированного течения, связанного с генерацией волн на границе раздела жидких слоев. Получены интегральные представления волнового сопротивления и подъемной силы. Выполнены численные расчеты для реальной морской среды. Выявлены условия, при которых происходит значительное увеличение гидродинамических реакций на обтекаемые элементы конструкций.


Владимиров И. Ю., Корчагин Н. Н., Савин А. С. Моделирование волнового воздействия на горизонтальные элементы конструкций в верхнем слое стратифицированного течения. Математическое моделирование и численные методы, 2014, №4 (4), c. 74-87



519.63:532.5 Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях

Басараб М. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-1835


Предложен метод численно-аналитического решения системы уравнений в частных производных, описывающих естественную тепловую конвекцию в двумерной полости сложной формы с произвольными граничными условиями (метод PGRM). Новый подход основан на комбинации методов Петрова – Галеркина и R-функций (функций Рвачева) и дает возможность получить априори удовлетворяющие граничным условиям представления функций температуры, вихря и тока в виде разложений по некоторым базисам. Согласованный выбор базисов позволяет естественным образом аппроксимировать краевые условия для функции тока. Нестационарные задачи конвекции решаются путем совместного использования PGRM и метода прямых (метод Роте).


Басараб М. А. Численно-аналитический метод решения двумерных задач естественной конвекции в замкнутых полостях. Математическое моделирование и численные методы, 2014, №1 (1), c. 18-35



539.3 Асимптотическая теория термоползучести многослойных тонких пластин

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-1836


Предложена теория термоползучести многослойных тонких пластин, основанная на анализе общих уравнений трехмерной нелинейной теории термоползучести с помощью построения асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения всех шести компонент тензора напряжений во всех слоях пластины, с точным учетом всех граничных условий. Выведены глобальные (осредненные по определенным правилам) уравнения теории термоползучести пластин, показано, что эти уравнения близки по структуре к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием 3-го порядка производных от продольных перемещений. Показано, что предложенная теория позволяет вычислить с наперед заданной точностью все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить только глобальные уравнения теории термоползучести пластин, а остальные вычисления сводятся только к использованию аналитических формул.


Димитриенко Ю. И., Губарева Е. А., Юрин Ю. В. Асимптотическая теория термоползучести многослойных тонких пластин. Математическое моделирование и численные методы, 2014, №4 (4), c. 18-36



539.3 Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана), Сборщиков С. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-3656


Предложена теория тонких конструктивно-ортотропных пластин, обладающих двухпериодической структурой, примером которых являются сотовые многослойные панели и подкрепленные пластины. Теория построена на основе уравнений об-щей трехмерной теории упругости путем с помощью асимптотических разложений по малому параметру, представляющему отношение толщины пластины к характерной длине, без введения каких-либо гипотез относительно характера распределения перемещений и напряжений по толщине. Сформулированы локальные задачи для нахождения напряжений во всех конструктивных элементах пластины. Показано, что полученные глобальные (осредненные по определенным правилам) уравнения теории пластин близки к уравнениям теории пластин Кирхгофа – Лява, но отличаются от них наличием третьего порядка производных от продольных перемещений. Предложенный метод позволяет вычислить все шесть компонент тензора напряжений, включая поперечные нормальные напряжения и напряжения межслойного сдвига, для этого необходимо численно решить локальные задачи до третьего приближения включительно. Приведен пример конечно-элементного решения локальных задач нулевого приближения для сотовой конструкции, который показал, что разработанный метод расчета пластин и его численная реализация достаточно эффективны, они позволяют проводить расчеты для сложных конструктивно-ортотропных пластин с сильно различающимися значениями упругих характеристик.


Димитриенко Ю. И., Губарева Е. А., Сборщиков С. В. Асимптотическая теория конструктивно-ортотропных пластин с двухпериодической структурой. Математическое моделирование и численные методы, 2014, №1 (1), c. 36-56



539.3 Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-4766


Разработана многомасштабная модель деформирования многослойных тонких пластин из композиционных материалов с уединенными дефектами. Модель основана на асимптотическом анализе общих трехмерных уравнений механики деформируемого твердого тела. Общее решение трехмерных уравнений сведено к решению задач для тонких пластин без дефектов и локальных трехмерных задач в окрестности дефекта с условием затухания решения на удалении от дефекта. Для расчета многослойных пластин использованы локальные задачи, которые позволяют найти явное решение для всех шести компонент тензора напряжений, в области без дефекта. В зоне дефекта напряжения и перемещения представляет собой суперпозицию двух решений: полученного на основе двумерного расчета пластин и локальной трехмерной задачи механики. Приведен пример численного конечно элементного решения локальной задачи механики для трехслойной композитной пластины с уединенным дефектом в среднем слое. Показано, что влияние дефекта локализовано в непосредственной его окрестности, а максимум концентрации трансверсальных напряжений достигается в окрестности вершины дефекта.


Димитриенко Ю. И., Юрин Ю. В. Многомасштабное моделирование многослойных тонких композитных пластин с уединенными дефектами. Математическое моделирование и численные методы, 2016, №4 (12), c. 47-66



629.1.028 Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой

Жилейкин М. М. (МГТУ им.Н.Э.Баумана), Сарач Е. Б. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-3-1740


В рамках решения задачи активного управления упругими и демпфирующими элементами подвесок многоосных колесных машин (МКМ) остро стоит задача исследования свойств семейств подвесок, спроектированных как для различных ходов, так и для различных нагрузок. При этом их кинематические схемы также могут быть весьма разнообразны. Сбор требуемого объема информации для семейств автомобилей, различных по конструкции и эксплуатационным характеристикам, представляется неосуществимым. Провести полные аналитические исследования по определению соответствующих характеристик не представляется возможным. Эта задача с успехом может быть решена только с помощью моделирования.
Разработана математическая модель движения МКМ, особенностью которой является то, что скорость машины задается не принудительно, а формируется силами взаимодействия вращающихся колесных движителей с опорным основанием. Это позволяет получить высокую точность при моделировании реальных процессов движения МКМ по неровностям. Разработанная модель может быть применена для исследования различных законов управления подвеской многоосных колесных машин.


Жилейкин М. М., Сарач Е. Б. Математическая модель движения многоосной колесной машины с податливой на кручение несущей системой. Математическое моделирование и численные методы, 2015, №3 (7), c. 17-40



519.6:533.6 Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Коряков М. Н. (МГТУ им.Н.Э.Баумана), Захаров А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-4-7591


Рассмотрено применение конечно-элементного метода RKDG (Runge — Kutta discontinuous Galerkin) для численного интегрирования трехмерной системы уравнений идеального газа на неструктурированных сетках. Проведено решение двух тестовых задач с помощью представленного алгоритма. Для каждой задачи приведено сравнение с известными аналитическими решениями или же с табличными данными. Дана оценка погрешности решения.


Димитриенко Ю. И., Коряков М. Н., Захаров А. А. Применение метода RKDG для численного решения трехмерных уравнений газовой динамики на неструктурированных сетках. Математическое моделирование и численные методы, 2015, №4 (8), c. 75-91



1>>