Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.2.214 Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывно-дискретной фильтрации случайных процессов в реальном времени

Валишин А. А. (МГТУ им.Н.Э.Баумана), Запривода А. В. (МГТУ им.Н.Э.Баумана), Клонов А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-93109


При развитии методов прогнозирования существенное значение приобретает исключение из исходной информации и исследуемых процессов случайных эффектов. Эти эффекты связаны не только с невозможностью учета всех факторов, но и с тем, что часть из них нередко совсем не принимаются во внимание. Не стоит забывать и про случайные погрешности измерений. В прогнозируемых величинах вследствие указанных эффектов создается некий случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, повысить достоверность и оправдываемость прогнозов. В статье рассмотрены принципы фильтрации данных в масштабе реального времени. Приводится постановка задачи, а также основные критерии оценок, которые должны выполняться для получения удовлетворительного результата. Разбирается принцип работы двух наиболее распространённых видов фильтров – абсолютно оптимальных и условно оптимальных, описываются их достоинства и недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с двумя датчиками. Представлены некоторые выводы и рекомендации о том, в каких случаях лучше использовать тот или иной фильтр.


Валишин А.А., Запривода А.В., Клонов А.С. Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывнодискретной фильтрации случайных процессов в реальном времени. Математическое моделирование и численные методы, 2024, № 1, с. 93–109.



521.2:521.3:521.61 Численное моделирование генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах

Рузиев З. Д. (Ташкентский государственный технический университет), Сабиров О. И. (Ташкентский государственный технический университет), Корабоев К. А. (Ташкентский государственный технический университет), Сапаев У. К. (Ташкентский государственный технический университет)


doi: 10.18698/2309-3684-2022-1-314


Проведено численное моделирование процессов генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Примененные численные методы основаны на приближении медленно-меняющихся амплитуд и однонаправленном приближении, применимом для упрощения волнового уравнения с нелинейной поляризацией в диспергирующей среде. При одинаковых условиях эксперимента проведено сравнение результатов этих приближений. Сравнительный анализ показывает, что вплоть до 10 фс длительности основного импульса оба приближенных метода описывают этот процесс преобразования частоты практически одинаково, но ниже 10 фс наблюдается расхождение результатов. Сравнение проводилось, главным образом по формированию временного профиля импульса второй гармоники и её эффективности. Представлена также методика получения временных профилей импульса второй гармоники при использовании однонаправленного приближения, где падающее поле используется целиком, как в спектральной, так и во временной области расчета. При использовании приближения медленно-меняющихся амплитуд учтено влияние дисперсии до третьего порядка малости.


Рузиев З.Дж., Собиров О.И., Корабоев К.А., Сапаев У.К. Численное моделирование генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Математическое моделирование и численные методы, 2022, № 1, с. 3–14.



519.8 «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-102113


С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.


Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115



519.62 Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями

Русских С. В. (ФГБУ ВО "Московский авиационный институт"), Шклярчук Ф. Н. (ФГБУ ВО "Московский авиационный институт")


doi: 10.18698/2309-3684-2022-3-1832


Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами. Предполагается, что на рассматриваемом интервале времени решение системы является достаточно гладкими — без разрывов, столкновений и бифуркаций. Из неоднородной системы уравнений выделяются в явном виде члены, линейно зависящие от координат, скоростей и ускорений и члены, зависящие от этих переменных нелинейно. Предлагается новый подход для численного решения шаговым методом начальной задачи, описываемой такой системой обыкновенных дифференциальных уравнений второго порядка. На шаге интегрирования неизвестные функции представляются в виде суммы функций, удовлетворяющих начальным условиям: линейного решения Эйлера и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближённо в смысле слабого решения по методу Галеркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые решаются методом итераций, начиная в первом приближении с линейного решения. Полученное решение в конце данного шага используется в качестве начальных условий на последующем шаге. В качестве примера рассмотрено одно однородное дифференциальное уравнение второго порядка без первой производной с сильной кубической нелинейностью по координате (при максимальной амплитуде нелинейная сила в два раза превышает линейную силу). Это уравнение имеет точное периодическое решение в виде интеграла энергии консервативной системы, которое используется для оценки точности численных решений, полученных методами Галеркина, Рунге-Кутта и Адамса второго порядка, а также методами Radau5 и BDF на различных интервалах времени (до 8000 периодов свободных колебаний системы) при использовании различных постоянных шагов интегрирования (от 0,0025 долей периода). При этом в методе Галеркина на каждом шаге использовалось четыре одинаковых корректирующих функций в виде полиномов от второй до пятой степеней. Показано, что на больших интервалах времени вычислений метод Галеркина обладает более высокой точностью по сравнению с другими рассмотренными численными методами. Поэтому он может быть использован для численного решения нелинейных задач, в которых требуется решать их на больших интервалах времени; например при расчете установившихся предельных циклов нелинейных колебаний и хаотических нелинейных колебаний со странными аттракторами.


Русских С.В., Шклярчук Ф.Н. Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями. Математическое моделирование и численные методы, 2022, № 3, с. 18–32.



519.63:536.4 Численное моделирование процессов образования, роста и разложения агломератов в пористой среде при разных режимах нагрева

Донской И. Г. (Институт систем энергетики им. Л.А. Мелентьева СО РАН)


doi: 10.18698/2309-3684-2021-3-2441


В статье рассматривается численная модель течения газа в пористой среде, содержащей частицы реакционноспособного компонента (полимера). При нагреве эти частицы расширяются, деформируются и заполняют порозное пространства, в результате чего проницаемость существенно снижается. Связь между пористостью и проницаемостью описывается формулой Козени-Кармана. Тогда вблизи нижней (входной) границы образуется область с низкой проницаемостью (агломерат), рост которой определяется условиями на боковой и входной границе. В результате расчетов получены характерные сценарии блокировки пористой среды при разных температурах нагрева. Показано, что при нагреве через стенку полимер разлагается, и пористая среда частично восстанавливает проницаемостью При нагреве поступающим газом агломерат намного более устойчив, поскольку он блокирует источник нагрева.


Донской И.Г. Численное моделирование процессов образования, роста и разложения агломератов в пористой среде при разных режимах нагрева. Математическое моделирование и численные методы, 2021, № 3, с. 24–41.



551.513 Глобальная климатическая модель с учетом биогеохимического углеродного цикла растительности суши

Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-2-3853


Целью данной работы является построение глобальной модели цикла углерода. Модель описывает продукционный процесс лесных экосистем с учетом сезонного хода климатических факторов. Она предназначена для моделирования длительного периода времени в составе глобальной климатической модели промежуточной сложности. Установлено, что глобальные характеристики климатической системы выходят на установившейся режим за время около 2000 лет и модель устойчиво работает. Приведены временные и пространственные распределения полученных климатических характеристик и биогеохимического углеродного цикла наземной растительности.


Пархоменко В.П. Глобальная климатическая модель с учетом биогеохимического углеродного цикла растительности суши. Математическое моделирование и численные методы, 2021, № 2, с. 38–53.



621.464.3 Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока сторон

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Данилов Н. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-313


Для решения проектной задачи разработана математическая модель функционирования системы синхронизации исполнительных органов на основе дроссельного делителя потока. Приводится решение задачи оптимизации времени рассогласования относительного перемещения исполнительных органов при наличии внешних знакопеременных силовых воздействий, выполненное с помощью генетического алгоритма и уточненное с помощью метода Нелдера-Мида


Бушуев А.Ю., Данилов Н.А. Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока. Математическое моделирование и численные методы, 2022, № 2, с. 3–15



519.8 Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава

Тягунов А. Г. (Уральский Федеральный Университет), Зейде К. М. (Universidad Politècnica Salesiana/University of Genoa), Мильдер О. Б. (Уральский Федеральный Университет), Тарасов Д. А. (Уральский Федеральный Университет)


doi: 10.18698/2309-3684-2023-2-332


В работе производится построение математической модели термо-временной эволюции кластера в расплаве жаропрочного никелевого сплава ЖС6У. Формулируется начально-краевая задача с движущейся границей, для решения которой применяется численное моделирование методом трассировки траектории частиц, а для описания эволюционных процессов используется ряд классических физических теорий. Для проверки точности модели привлекается физический эксперимент построения политерм и изотерм электросопротивления рассматриваемого сплава. Подтверждено, что модель броуновской диффузии и теория проводимости Друде применимы для описания, как временной, так и температурной эволюции кластера. Так же оправдал себя подход к моделированию на основе «твердых шаров». По результатам моделирования, во временном диапазоне от 1690 до 1752 К количество частиц в составе кластера меняется от 5000 до 2000, средняя динамическая вязкость кластера изменяется от 3 до 2 *1010 Па*с, однако предполагается, что центральная часть существенно плотнее периферии, радиус кластера изменяется от 24 до 18, радиус свободной зоны вокруг кластера – от 56 до 43. Определены направления дальнейшего развития модели.


Тягунов А.Г., Зейде К.М., Мильдер О.Б., Тарасов Д.А. Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава. Математическое моделирование и численные методы, 2023, № 2, с. 3–32.



523.6+533.6 Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез

Андрущенко В. А. (Институт автоматизации проектирования РАН), Сызранова Н. Г. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2023-3-4261


В рамках актуальной проблемы кометно-астероидной опасности численно исследуются физические процессы, вызывающие разрушение и фрагментацию метеорных тел в атмосфере Земли, в данном случае Тунгусского болида. Число всевозможных версий и гипотез, связанных с Тунгусским явлением, чрезвычайно велико и продолжает возрастать, поэтому необходим анализ и обобщений всех известных фактов, присущих этому нестандартному катастрофическому событию, и только после этого приступить к выдвижению тех или иных гипотез, его объясняющих. На основе разработанной физико-математической модели, определяющей движение космических объектов естественного происхождения в атмосфере и их взаимодействия с ней, нами предложены две гипотезы, объясняющие процессы, происходящие при падении Тунгусского тела в 1908г. Первая гипотеза связана с дроблением тела, представляющего собой каменный метеороид, на большое количество фрагментов, которые разрушились в плотных слоях атмосферы под действием термических напряжений до размера мелкой пыли. Трудности выявления мелких частиц, выпавших именно в результате Тунгусского события, объясняются в основном следующим обстоятельством ˗ сроки начала первичных поисков следов падения тела были отдалены от момента события на целых двадцать лет, в течение которых на этой территории могло произойти весьма значительное количество других геофизических процессов. Вторая гипотеза связана с явлениями, возникающими при малых углах входа тела в атмосферу Земли. В этом случае происходит изменение баллистики его полета в атмосфере, заключающееся в переходе от режима падения к режиму подъема. Этот эффект приводит к реализации следующих возможных сценариев события: возврат тела обратно в космическое пространство при его остаточной скорости большей второй космической; переход тела на орбиту спутника Земли при остаточной скорости большей первой космической; при меньших значениях остаточной скорости тела возвращение его через некоторое время к режиму падения и достижение им земной поверхности на значительном расстоянии от предполагаемого места падения. Предложенные гипотезы объясняют, например, отсутствие материальных следов, в том числе и кратеров в ходе поисков останков Тунгусского болида в окрестности вывала леса


Андрущенко В.А., Сызранова Н.Г. Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез. Математическое моделирование и численные методы, 2023, № 3, с. 42–61.



<< 3 >>