Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.6 Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла

Хайиткулов Б. Х. (Национальный университет Узбекистана)


doi: 10.18698/2309-3684-2023-1-3242


Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие — обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в параллелепипеде. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалось. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением конвекции-диффузии, заданным для первой краевой задачи. Краевая задача изучается для трёхмерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


Хайиткулов Б.Х. Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла. Математическое моделирование и численные методы, 2023, No 1, с. 32–42.



539.3 Моделирование циклической повреждаемости и усталостной прочности при высокочастотном нагружении 3Д-напечатанных образцов из алюминиевого сплава

Никитин А. Д. (Институт автоматизации проектирования РАН), Стратула Б. А. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2024-1-1837


На основе данных высокочастотных циклических испытаний корсетных образцов из алюминиевого сплава Д16Т и SLM сплава AlSi10Mg на современных пьезоэлектрических установках выполнен сравнительный анализ усталостной прочности горячекатаного и SLM материалов. Показана относительно низкая циклическая прочность SLM материалов, связанная с их сложной микроструктурой, на которую влияют стратегия лазерного сканирования, параметры лазерного луча, энергия, теплоотдача из зоны плавки, параметры среды в камере. С использованием мультирежимной модели циклической повреждаемости и численного метода расчета кинетики повреждаемости при высокочастотном циклическом нагружении проведено математическое моделирование процесса усталостного разрушения указанных образцов для различных амплитуд и средних напряжений в цикле. Предложенная модель и метод расчета позволяют быстро и эффективно строить усталостные кривые для различных режимов циклического нагружения и коэффициентов асимметрии цикла. Для этого достаточно знать базовые точки бимодальной усталостной кривой для реверсивного цикла.


Никитин А.Д., Стратула Б.А. Моделирование циклической повреждаемости и усталостной прочности при высокочастотном нагружении 3Д-напечатанных образцов из алюминиевого сплава. Математическое моделирование и численные методы, 2024, № 1, с. 18–37.



621.464.3 Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока сторон

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Данилов Н. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-313


Для решения проектной задачи разработана математическая модель функционирования системы синхронизации исполнительных органов на основе дроссельного делителя потока. Приводится решение задачи оптимизации времени рассогласования относительного перемещения исполнительных органов при наличии внешних знакопеременных силовых воздействий, выполненное с помощью генетического алгоритма и уточненное с помощью метода Нелдера-Мида


Бушуев А.Ю., Данилов Н.А. Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока. Математическое моделирование и численные методы, 2022, № 2, с. 3–15



621.822.2, 519.63 Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения

Соколов Н. В. (АО НИИтурбокомпрессор им. В.Б. Шнеппа/Казанский национальный исследовательский технологический университет), Хадиев М. Б. (Казанский национальный исследовательский технологический университет), Федотов П. Е. (Казанский (Приволжский) федеральный университет/ООО «АСТ Поволжье»), Федотов Е. М. (ООО «АСТ Поволжье»)


doi: 10.18698/2309-3684-2023-1-92111


Представлены исследования влияния класса вязкости подаваемого масла ISO VG32 и ISO VG46 в широком диапазоне скоростей ротора и рабочих зазорах на локальные и интегральные характеристики упорного подшипника скольжения с неподвижными подушками компрессора. Исследования проведены с помощью программы расчетов Sm2Px3Txτ на основе результатов численных экспериментов подшипника. Программа построена численной реализацией нестационарной периодической термоупругогидродинамической (ПТУГД) математической модели работы упорного подшипника. Результаты исследований указывают на существенное влияние класса вязкости масла на основные характеристики и температурный режим работы упорного подшипника. При замене масла ISO VG46 на более жидкое ISO VG32 происходит заметное снижение температур подушек подшипника и потерь мощности. Однако уровень этого изменения определяется задаваемым рабочим зазором между вращающимся упорным диском и подушками подшипника. Проанализировано влияние класса вязкости масла и профиля рабочей поверхности на температурный режим работы подушки. Определяются величина и расположение максимальной температуры подушки упорного подшипника, а также возможность применения на практике эталонной точки 75/75 из API-670.


Соколов Н.В., Хадиев М.Б., Федотов П.Е., Федотов Е.М. Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения. Математическое моделирование и численные методы, 2023, No 1, с. 92–111.



519.62 Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями

Русских С. В. (ФГБУ ВО "Московский авиационный институт"), Шклярчук Ф. Н. (ФГБУ ВО "Московский авиационный институт")


doi: 10.18698/2309-3684-2022-3-1832


Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами. Предполагается, что на рассматриваемом интервале времени решение системы является достаточно гладкими — без разрывов, столкновений и бифуркаций. Из неоднородной системы уравнений выделяются в явном виде члены, линейно зависящие от координат, скоростей и ускорений и члены, зависящие от этих переменных нелинейно. Предлагается новый подход для численного решения шаговым методом начальной задачи, описываемой такой системой обыкновенных дифференциальных уравнений второго порядка. На шаге интегрирования неизвестные функции представляются в виде суммы функций, удовлетворяющих начальным условиям: линейного решения Эйлера и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближённо в смысле слабого решения по методу Галеркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые решаются методом итераций, начиная в первом приближении с линейного решения. Полученное решение в конце данного шага используется в качестве начальных условий на последующем шаге. В качестве примера рассмотрено одно однородное дифференциальное уравнение второго порядка без первой производной с сильной кубической нелинейностью по координате (при максимальной амплитуде нелинейная сила в два раза превышает линейную силу). Это уравнение имеет точное периодическое решение в виде интеграла энергии консервативной системы, которое используется для оценки точности численных решений, полученных методами Галеркина, Рунге-Кутта и Адамса второго порядка, а также методами Radau5 и BDF на различных интервалах времени (до 8000 периодов свободных колебаний системы) при использовании различных постоянных шагов интегрирования (от 0,0025 долей периода). При этом в методе Галеркина на каждом шаге использовалось четыре одинаковых корректирующих функций в виде полиномов от второй до пятой степеней. Показано, что на больших интервалах времени вычислений метод Галеркина обладает более высокой точностью по сравнению с другими рассмотренными численными методами. Поэтому он может быть использован для численного решения нелинейных задач, в которых требуется решать их на больших интервалах времени; например при расчете установившихся предельных циклов нелинейных колебаний и хаотических нелинейных колебаний со странными аттракторами.


Русских С.В., Шклярчук Ф.Н. Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями. Математическое моделирование и численные методы, 2022, № 3, с. 18–32.



519.6 Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах

Белотелов Н. В. (Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН/МГТУ им.Н.Э.Баумана), Павлов С. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-105119


Необходимость разработки формализованных компьютерно-ориентированных подходов к проведению междисциплинарных исследований межкультурных взаимодействий является актуальной задачей. В статье описывается подход к разработке агентных моделей межкультурных взаимодействий, основанный на использовании неметризуемых хаусдорфовых пространств с использованием генетических алгоритмов для введения динамических изменений в рассматриваемой структуре культурных агентов. В статье рассматривается прототип агентной модели, в которой состояние агентов описывается в хаусдорфовых пространствах. С помощью выбора опорных точек для каждого агента строится функция Урысона, которая позволяет вводить предпочтения агентов. Далее с помощью технологии генетических алгоритмов, удается получить тактовую динамику изменения всей системы агентов. В статье приводится описание некоторых имитационных экспериментов. Обсуждаются возможные перспективы развития данного подхода.


Белотелов Н.В, Павлов С.А. Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах. Математическое моделирование и численные методы, 2021, № 3, с. 105–119.



004.89 Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow

Крееренко С. С. (ПАО «ТАНТК им. Г.М. Бериева»), Крееренко О. Д. (ПАО «ТАНТК им. Г.М. Бериева»)


doi: 10.18698/2309-3684-2024-3-8199


Рассматривается задача моделирования продольного движения самолета транспортной категории и параметрическая идентификация аэродинамических характеристик продольного движения: составляющих безразмерных коэффициентов аэродинамической подъемной силы и момента тангажа. Задача решается в классе модульных полуэмпирических динамических моделей, созданных объединением теоретического и нейросетевого моделирования. Работоспособность и практическая значимость моделей подтверждается результатами вычислительных экспериментов. Разработка нейросетевой модели продольного движения самолета выполнена на языке Python с использованием открытой программной библиотеки Tensorflow для машинного обучения и высокоуровневого API Keras в составе Tensorflow.


Крееренко С.С., Крееренко О.Д. Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow. Математическое моделирование и численные методы, 2024, № 3, с. 81–99.



519.6:621.791.05+544.015.4 Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава

Исаев В. И. (ИТПМ), Черепанов А. Н. (ИТПМ), Шапеев В. П. (ИТПМ/Новосибирский государственный университет)


doi: 10.18698/2309-3684-2023-1-8191


Предложена самосогласованная термокинетическая модель кристаллизации бинарного сплава в сварочном шве, модифицированного наноразмерными инокуляторами, введенными в сварочную ванну при лазерной сварке. Сформулированная комплексная модель процесса сварки однородных металлов описывает теплофизические процессы формирования макроскопических параметров сварного шва, его структуру в зависимости от режимов сварки и свойств наномодифицирующих порошков (краевого угла смачиваемости, концентрации модифицирующей добавки). Она основана на теплофизической модели воздействия лазерного излучения на металл при лазерной сварке металлических пластин, дополненной неравновесной моделью гетерогенного зарождения и роста кристаллической фазы на введенных в сварочную ванну модифицирующих наночастицах в процессе остывания и кристаллизации расплава в сварочном шве. Применением метода коллокации и наименьших квадратов проведено численное моделирование сварки встык пластин из бинарного сплава алюминия. Приведены поле температуры в изделии в процессе сварки, форма поперечного сечения шва, совпадающая с формой поперечного сечения сварочной ванны, и количественные характеристики его кристаллической структуры, полученные в результате моделирования. Исследовано влияние краевого угла смачивания наночастиц расплавом и их массовой концентрации на характерный размер кристаллического зерна в сварочном шве.


Исаев В.И., Черепанов А.Н., Шапеев В.П. Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава. Математическое моделирование и численные методы, 2023, No 1, с. 81–91.



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



<< 3 >>