Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"
doi: 10.18698/2309-3684-2023-1-8191
Предложена самосогласованная термокинетическая модель кристаллизации бинарного сплава в сварочном шве, модифицированного наноразмерными инокуляторами, введенными в сварочную ванну при лазерной сварке. Сформулированная комплексная модель процесса сварки однородных металлов описывает теплофизические процессы формирования макроскопических параметров сварного шва, его структуру в зависимости от режимов сварки и свойств наномодифицирующих порошков (краевого угла смачиваемости, концентрации модифицирующей добавки). Она основана на теплофизической модели воздействия лазерного излучения на металл при лазерной сварке металлических пластин, дополненной неравновесной моделью гетерогенного зарождения и роста кристаллической фазы на введенных в сварочную ванну модифицирующих наночастицах в процессе остывания и кристаллизации расплава в сварочном шве. Применением метода коллокации и наименьших квадратов проведено численное моделирование сварки встык пластин из бинарного сплава алюминия. Приведены поле температуры в изделии в процессе сварки, форма поперечного сечения шва, совпадающая с формой поперечного сечения сварочной ванны, и количественные характеристики его кристаллической структуры, полученные в результате моделирования. Исследовано влияние краевого угла смачивания наночастиц расплавом и их массовой концентрации на характерный размер кристаллического зерна в сварочном шве.
Исаев В.И., Черепанов А.Н., Шапеев В.П. Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава. Математическое моделирование и численные методы, 2023, No 1, с. 81–91.
doi: 10.18698/2309-3684-2023-2-129154
Формирование цепочки поставок сырья тесно связано с производственными проблемами деревообрабатывающих предприятий. Построение цепочек поставок сырья и оптимальный расчет ежедневного производства были актуальными темами с начала второй промышленной революции. В данной статье рассматривается предприятие Приморского края деревообрабатывающей промышленности, у которого нет делян в аренде. Цель работы состоит в том, чтобы решить проблему построения цепочки поставок сырья с учетом ежедневной загрузки производственных площадей и поиску оптимального решения. Источником сырья выступает товарно-сырьевая биржа, где лоты появляются ежедневно в случайном порядке в разных регионах добычи. В научной литературе существует множество способов расчета наилучшего значения прибыли с учетом множества ограничений, но в них не учтены многие важные для деревообрабатывающих предприятий особенности. Исходя из обзора научной литературы в данной статье представлена математическая модель, которая выступает в роли механизма по принятию решений в каждый отдельный день, и она отличается тем, что может учитывать коэффициент полезного объема сырья, который дойдет до склада и время в пути. Тестирование модели проводилось на данных Российской товарно-сырьевой биржи и компании в Приморском крае. Результатом тестирования модели является вычисленная оптимальная траектория прибыли для каждого набора данных об объемах сырья, времени лотов в пути, а также множество важных показателей для любого производства: объем прибыли, объем производства товаров. Анализ полеченных решений показал, что существуют сложности в планировании цепочек поставок и объемов производства. Проанализированы регионы в качестве источников сырья, из каких регионов и когда стоит закупать сырье. Приведены недостатки и положительные стороны математической модели.
Рогулин Р.С. Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды. Математическое моделирование и численные методы, 2023,№ 2, с. 129–154.
519.6 Агентная модель двух конкурирующих популяций с учетом структурности
doi: 10.18698/2309-3684-2022-3-7183
В статье описывается агентная имитационная модель двух популяций, конкурирующих за один ресурс. В модели считается, что особь погибает, если её масса-энергия становится неположительной. Предполагается, что особи каждой из рассматриваемых популяций могут образовывать стаи, это позволяет популяциям повышать свою конкурентоспособность. В модели это формализуется посредством возможности организовывать сети, связывающие особей одного вида. При этом особи могут образовывать лишь определенное количество связей с соседями. В модели для описания этого вводится понятие «валентности». Предполагается, что внутри каждой сети происходит мгновенное перераспределение ресурса по всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели описана структура программы, с помощью которой проводились имитационные эксперименты. В результате проведенных имитационных экспериментов было получено следующее. Если ресурс высокопродуктивный, то в процессе конкурентного взаимодействия побеждает популяция, агенты, которой имеют большую «валентность». А в случае низко продуктивного ресурса победу в конкурентном взаимодействии одерживают особи популяции, обладающей меньшей «валентностью». Это связано с тем, что более сложные структуры требуют большей энергии поддержания стаи.
Белотелов Н.В., Бровко А.В. Агентная модель двух конкурирующих популяций с учетом их структурности. Математическое моделирование и численные методы, 2022, № 3, с. 71–83.
519.8 Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава
doi: 10.18698/2309-3684-2023-2-332
В работе производится построение математической модели термо-временной эволюции кластера в расплаве жаропрочного никелевого сплава ЖС6У. Формулируется начально-краевая задача с движущейся границей, для решения которой применяется численное моделирование методом трассировки траектории частиц, а для описания эволюционных процессов используется ряд классических физических теорий. Для проверки точности модели привлекается физический эксперимент построения политерм и изотерм электросопротивления рассматриваемого сплава. Подтверждено, что модель броуновской диффузии и теория проводимости Друде применимы для описания, как временной, так и температурной эволюции кластера. Так же оправдал себя подход к моделированию на основе «твердых шаров». По результатам моделирования, во временном диапазоне от 1690 до 1752 К количество частиц в составе кластера меняется от 5000 до 2000, средняя динамическая вязкость кластера изменяется от 3 до 2 *1010 Па*с, однако предполагается, что центральная часть существенно плотнее периферии, радиус кластера изменяется от 24 до 18, радиус свободной зоны вокруг кластера – от 56 до 43. Определены направления дальнейшего развития модели.
Тягунов А.Г., Зейде К.М., Мильдер О.Б., Тарасов Д.А. Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава. Математическое моделирование и численные методы, 2023, № 2, с. 3–32.
521.19 Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе
doi: 10.18698/2309-3684-2023-4-6473
Одним из видов гравитационного рассеяния в Солнечной системе в рамках модели круговой ограниченной задачи трех тел (CR3BP) являются гравитационные маневры «частиц незначительной массы» (космические аппараты, астероиды, кометы и др.). Для их описания полезна физическая аналогия с рассеянием пучков заряженных альфа-частиц в кулоновском поле. Однако, в отличие от рассеяния заряженных частиц, существуют внешние ограничения на возможность выполнения гравитационных маневров, связанные с ограниченным размером сферы влияния планеты. В то же время из литературы по CR3BP известны внутренние ограничения на возможность исполнения гравитационных маневров, оцениваемые эффективными радиусами планет (включая гравитационный захват планетой, попадающей в нее). Они зависят от асимптотической скорости частицы относительно планеты. По понятным причинам их влияние лишает возможности эффективного использования гравитационных маневров. В работе представлены обобщенные оценки размеров околопланетных областей (плоских вращающихся синхронно с малым телом «пертурбационных колец» или «пертурбационных оболочек» в трехмерном случае), попадание в которые является необходимым условием реализации гравитационных маневров. Детальный анализ показывает, что Нептун и Сатурн имеют характерные оболочки — полые сферы возмущений самых больших размеров в Солнечной системе, а Юпитер занимает в этом списке лишь четвертое место.
Боровин Г.К., Голубев Ю.Ф., Грушевский А.В., Тучин А.Г. Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе.Математическое моделирование и численные методы, 2023, № 4, с. 64–73.
doi: 10.18698/2309-3684-2024-3-8199
Рассматривается задача моделирования продольного движения самолета транспортной категории и параметрическая идентификация аэродинамических характеристик продольного движения: составляющих безразмерных коэффициентов аэродинамической подъемной силы и момента тангажа. Задача решается в классе модульных полуэмпирических динамических моделей, созданных объединением теоретического и нейросетевого моделирования. Работоспособность и практическая значимость моделей подтверждается результатами вычислительных экспериментов. Разработка нейросетевой модели продольного движения самолета выполнена на языке Python с использованием открытой программной библиотеки Tensorflow для машинного обучения и высокоуровневого API Keras в составе Tensorflow.
Крееренко С.С., Крееренко О.Д. Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow. Математическое моделирование и численные методы, 2024, № 3, с. 81–99.
519.17 Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания
doi: 10.18698/2309-3684-2024-2-6884
В статье впервые получено аналитическое решение задачи о преследовании в системе «хищник–жертва» в евклидовом 3D-пространстве для произвольных начальных углов прицеливания. В процессе преследования жертва движется равномерно и прямолинейно, постоянный по модулю вектор скорости хищника нацелен на жертву. Точное решение задачи получено в форме параметрически заданной пространственной кривой преследования. Получены точные выражения для других существенных характеристик процесса преследования (времени преследования, координат жертвы, длины кривой преследования, и др.). Проведено реалистичное компьютерное моделирование взаимного движения хищника и жертвы в пространстве и во времени; определены характерные параметры процесса преследования. Отмечен значительный дидактический потенциал решенной задачи о 3D-преследовании для подготовки будущих специалистов в области механики и управления; задача может служить содержательной основой для выполнения обучающимися исследовательских проектов, курсовых и выпускных квалификационных работ.
Бодряков В.Ю. Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания. Математическое моделирование и численные методы, 2024, № 2, с. 68-84.
doi: 10.18698/2309-3684-2024-2-316
В исследовании рассмотрена проблема оптимизации системы обнаружения трещин лопаток газовых турбин. В качестве объекта исследования рассмотрена оболочка капсулы системы обнаружения повреждений, находящаяся в контакте с телом лопатки и под действием внутреннего давления. Задача исследования была посвящена вопросу математического моделирования оптимального давления в капсулах системы обнаружения повреждений. В рамках решения проблемы исследования проведена математическая постановка задачи оптимизации нелинейной функции давления при наличии ограничений на варьируемые параметры: толщину стенки и наружный диаметр цилиндрической оболочки капсулы. Построение целевой функции оптимизации проводилось на основании условия равновесия элемента оболочки в области раскрытия трещины турбинной лопатки, критерия предельного состояния с использованием теории прочности Треска-Сен-Венана. Методика исследования строилась с использованием приближенного разложения функции напряжений в ряд Тейлора, применением метода множителей Лагранжа, теоремы Куна-Таккера. При решении задачи условной оптимизации проанализированы случаи нарушения условий регулярности ограничивающих функций. По результатам расчета минимальное значение требуемого давления для разрушения оболочки капсулы в случае раскрытия берегов трещины турбинной лопатки достигается при максимальном значении наружного диаметра оболочки и минимальной толщине ее стенки. По данным тестового расчета графически представлена область допустимых решений оптимизационной задачи, и показаны линии уровня целевой функции оптимизации давления. Построенная математическая модель и алгоритм позволят автоматизировать процесс расчета требуемого давления в капсулах системы обнаружения трещин лопаток турбин и получить оценку минимального значения давления при наличии ограничений на толщину стенки и наружный диаметр оболочки капсулы.
Андрианов И.К., Чепурнова Е.К. Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин. Математическое моделирование и численные методы, 2024, № 2, с. 3–16.
doi: 10.18698/2309-3684-2024-1-5566
Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие ― обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в прямоугольнике. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалась. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения ностационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением теплопроводности с постоянными коэффициентами, заданными для первой краевой задачи. Краевая задача изучается для двумерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.
Хайиткулов Б. Х. Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде. Математическое моделирование и численные методы, 2024, № 1, с. 55–66.