Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



539.3 Моделирование циклической повреждаемости и усталостной прочности при высокочастотном нагружении 3Д-напечатанных образцов из алюминиевого сплава

Никитин А. Д. (Институт автоматизации проектирования РАН), Стратула Б. А. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2024-1-1837


На основе данных высокочастотных циклических испытаний корсетных образцов из алюминиевого сплава Д16Т и SLM сплава AlSi10Mg на современных пьезоэлектрических установках выполнен сравнительный анализ усталостной прочности горячекатаного и SLM материалов. Показана относительно низкая циклическая прочность SLM материалов, связанная с их сложной микроструктурой, на которую влияют стратегия лазерного сканирования, параметры лазерного луча, энергия, теплоотдача из зоны плавки, параметры среды в камере. С использованием мультирежимной модели циклической повреждаемости и численного метода расчета кинетики повреждаемости при высокочастотном циклическом нагружении проведено математическое моделирование процесса усталостного разрушения указанных образцов для различных амплитуд и средних напряжений в цикле. Предложенная модель и метод расчета позволяют быстро и эффективно строить усталостные кривые для различных режимов циклического нагружения и коэффициентов асимметрии цикла. Для этого достаточно знать базовые точки бимодальной усталостной кривой для реверсивного цикла.


Никитин А.Д., Стратула Б.А. Моделирование циклической повреждаемости и усталостной прочности при высокочастотном нагружении 3Д-напечатанных образцов из алюминиевого сплава. Математическое моделирование и численные методы, 2024, № 1, с. 18–37.



519.62 Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями

Русских С. В. (ФГБУ ВО "Московский авиационный институт"), Шклярчук Ф. Н. (ФГБУ ВО "Московский авиационный институт")


doi: 10.18698/2309-3684-2022-3-1832


Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами. Предполагается, что на рассматриваемом интервале времени решение системы является достаточно гладкими — без разрывов, столкновений и бифуркаций. Из неоднородной системы уравнений выделяются в явном виде члены, линейно зависящие от координат, скоростей и ускорений и члены, зависящие от этих переменных нелинейно. Предлагается новый подход для численного решения шаговым методом начальной задачи, описываемой такой системой обыкновенных дифференциальных уравнений второго порядка. На шаге интегрирования неизвестные функции представляются в виде суммы функций, удовлетворяющих начальным условиям: линейного решения Эйлера и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближённо в смысле слабого решения по методу Галеркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые решаются методом итераций, начиная в первом приближении с линейного решения. Полученное решение в конце данного шага используется в качестве начальных условий на последующем шаге. В качестве примера рассмотрено одно однородное дифференциальное уравнение второго порядка без первой производной с сильной кубической нелинейностью по координате (при максимальной амплитуде нелинейная сила в два раза превышает линейную силу). Это уравнение имеет точное периодическое решение в виде интеграла энергии консервативной системы, которое используется для оценки точности численных решений, полученных методами Галеркина, Рунге-Кутта и Адамса второго порядка, а также методами Radau5 и BDF на различных интервалах времени (до 8000 периодов свободных колебаний системы) при использовании различных постоянных шагов интегрирования (от 0,0025 долей периода). При этом в методе Галеркина на каждом шаге использовалось четыре одинаковых корректирующих функций в виде полиномов от второй до пятой степеней. Показано, что на больших интервалах времени вычислений метод Галеркина обладает более высокой точностью по сравнению с другими рассмотренными численными методами. Поэтому он может быть использован для численного решения нелинейных задач, в которых требуется решать их на больших интервалах времени; например при расчете установившихся предельных циклов нелинейных колебаний и хаотических нелинейных колебаний со странными аттракторами.


Русских С.В., Шклярчук Ф.Н. Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями. Математическое моделирование и численные методы, 2022, № 3, с. 18–32.



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



519.87 Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции

Бобров В. А. (МПГУ), Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-4-12134


В среде клеточных автоматов рассматривается дискретный аналог классической модели конкуренции А. Лотки – В. Вольтерры. Известно, что в классической модели тип ее эволюции во времени определяется в первую очередь принадлежностью коэффициентов двойных стандартов тем или иным диапазонам их возможных значений. Показано, что такая же ситуация имеет место и для дискретной модели. Для классической модели имеет место эффект мягкой силы. При рассмотрении модели применительно к социальным системам, она превращается в кооперативную позиционную дифференциальную игру, ограничениями которой становится исходная система уравнений конкуренции А. Лотки – В. Вольтерры, а управлениями — коэффициенты двойных стандартов. Эффект мягкой силы состоит в том, что стороны склонны сравнивать конкурентное давление на них популяции соперника с конкурентным давлением внутри собственной популяции и могут принять меньшее давление соперника за благосклонное его к ним отношение, а большее — за враждебное проявление. Тогда как на самом деле — сравнение внешнего конкурентного давления с внутренним в данной игре не информативно — все зависит исключительно от коэффициентов двойных стандартов, которые в этой игре являются управлениями и поэтому не известны сопернику. Имитационные эксперименты с аналогом модели конкуренции, реализованным в среде клеточных автоматов, показывают, что в дискретной модели эффект мягкой силы также имеет место


Бобров В.А., Бродский Ю.И. Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции. Математическое моделирование и численные методы, 2021, № 4, с. 121–134.



519.6 Численное решение уравнений смешанного типав неограниченной области на плоскости

Галанин М. П. (Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Ухова А. Р. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-105124


Целью является построение и реализация алгоритма нахождения численного решения задачи для уравнений смешанного типа в неограниченной области. Рассматриваются задачи, в которых исследуемый процесс описывается в некоторой ограниченной области уравнением теплопроводности или волновым, а вне нее — уравнением Лапласа. Поставлены необходимые дополнительные условия в нуле, на бесконечности и условия сопряжения на границе внутренней области. Описан алгоритм нахождения численного решения задачи с волновым уравнением в ограниченной области в одномерном и двумерном случаях, задач с уравнением теплопроводности или волновым в двумерном случае. Разностные схемы построены интегро–интерполяционным методом. Задача решается в ограниченной области. На ее границе поставлены нелокальные граничные условия так, что решение поставленной задачи в ограниченной области совпадает с проекцией на нее решения задачи в неограниченной области. При этом для решения введена искусственная граница в части области, в которой процесс описывается уравнением Лапласа. Построены итерационный алгоритм и алгоритм с нелокальным граничным условием. Представлены результаты вычислений для примеров в различных областях


Галанин М.П., Ухова А.Р. Численное решение уравнений смешанного типа в неограниченной области на плоскости. Математическое моделирование и численные методы, 2023, № 3, с. 105–124.



519.63 Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной

Перов Е. А. (Объединенный институт высоких температур РАН), Жаховский В. В. (Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова/Объединенный институт высоких температур РАН), Иногамов Н. А. (Институт теоретической физики им. Л.Д. Ландау РАН), Шепелев В. В. (Институт автоматизации проектирования РАН), Фортова С. В. (Институт автоматизации проектирования РАН), Долуденко А. Н. (Объединенный институт высоких температур РАН)


doi: 10.18698/2309-3684-2023-4-7492


Пластические деформации лежат в основе такой промышленной технологии, как лазерное термоупрочнение или лазерный пиннинг (LSP, laser shock peening). В данной работе методом классической молекулярной динамики исследована возможность упрочнения поверхностного слоя алюминиевого образца, облученного единичным фемтосекундным лазерным импульсом. Рассмотрены три ориентации кристаллической решетки — [1, 0, 0] (первая ориентация кристаллической решетки), [1, 1, 0] (вторая ориентация кристаллической решетки), [1, 1, 1] (третья ориентация кристаллической решетки). Проведено численное исследование влияния различных величин вложенной энергии в диапазоне от 120,98 Дж/м2 до 2540,01 Дж/м2 лазерного импульса на глубину залегания пластических деформаций, влияющих на упрочнение исследуемого материала. Построена зависимость максимальной глубины залегания пластических деформаций от вложенной энергии. Значения энергий подобранны таким образом, что пластический фронт УВ (ударной волны) останавливался до того, как достигнет правой границы моделируемого образца. Необходимость соблюдения этого условия обусловлена тем фактом, что отразившаяся от правой границы образца волна растяжения может тормозить пластический ударный фронт, выступая в роли волны разгрузки. С помощью построенной в работе зависимости максимальной глубины залегания пластических деформаций от вложенной энергии определено пороговое значение вложенной энергии, при превышении которого алюминий начинает пластически деформироваться.


Перов E.А., Жаховский В.В., Иногамов Н.А., Шепелев В.В., Фортова С.В., Долуденко А.Н.. Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной. Математическое моделирование и численные методы, 2023, № 4, с. 74-92



519.6, 621.4 Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин

Андрианов И. К. (Комсомольский-на-Амуре государственный технический университет), Чепурнова Е. К. (Комсомольский-на-Амуре государственный технический университет)


doi: 10.18698/2309-3684-2024-2-316


В исследовании рассмотрена проблема оптимизации системы обнаружения трещин лопаток газовых турбин. В качестве объекта исследования рассмотрена оболочка капсулы системы обнаружения повреждений, находящаяся в контакте с телом лопатки и под действием внутреннего давления. Задача исследования была посвящена вопросу математического моделирования оптимального давления в капсулах системы обнаружения повреждений. В рамках решения проблемы исследования проведена математическая постановка задачи оптимизации нелинейной функции давления при наличии ограничений на варьируемые параметры: толщину стенки и наружный диаметр цилиндрической оболочки капсулы. Построение целевой функции оптимизации проводилось на основании условия равновесия элемента оболочки в области раскрытия трещины турбинной лопатки, критерия предельного состояния с использованием теории прочности Треска-Сен-Венана. Методика исследования строилась с использованием приближенного разложения функции напряжений в ряд Тейлора, применением метода множителей Лагранжа, теоремы Куна-Таккера. При решении задачи условной оптимизации проанализированы случаи нарушения условий регулярности ограничивающих функций. По результатам расчета минимальное значение требуемого давления для разрушения оболочки капсулы в случае раскрытия берегов трещины турбинной лопатки достигается при максимальном значении наружного диаметра оболочки и минимальной толщине ее стенки. По данным тестового расчета графически представлена область допустимых решений оптимизационной задачи, и показаны линии уровня целевой функции оптимизации давления. Построенная математическая модель и алгоритм позволят автоматизировать процесс расчета требуемого давления в капсулах системы обнаружения трещин лопаток турбин и получить оценку минимального значения давления при наличии ограничений на толщину стенки и наружный диаметр оболочки капсулы.


Андрианов И.К., Чепурнова Е.К. Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин. Математическое моделирование и численные методы, 2024, № 2, с. 3–16.



519.8 «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-102113


С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.


Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115



519.6 Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде

Хайиткулов Б. Х. (Национальный университет Узбекистана)


doi: 10.18698/2309-3684-2024-1-5566


Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие ― обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в прямоугольнике. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалась. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения ностационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением теплопроводности с постоянными коэффициентами, заданными для первой краевой задачи. Краевая задача изучается для двумерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


Хайиткулов Б. Х. Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде. Математическое моделирование и численные методы, 2024, № 1, с. 55–66.



<< 3 >>