Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"
521.19 Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе
doi: 10.18698/2309-3684-2023-4-6473
Одним из видов гравитационного рассеяния в Солнечной системе в рамках модели круговой ограниченной задачи трех тел (CR3BP) являются гравитационные маневры «частиц незначительной массы» (космические аппараты, астероиды, кометы и др.). Для их описания полезна физическая аналогия с рассеянием пучков заряженных альфа-частиц в кулоновском поле. Однако, в отличие от рассеяния заряженных частиц, существуют внешние ограничения на возможность выполнения гравитационных маневров, связанные с ограниченным размером сферы влияния планеты. В то же время из литературы по CR3BP известны внутренние ограничения на возможность исполнения гравитационных маневров, оцениваемые эффективными радиусами планет (включая гравитационный захват планетой, попадающей в нее). Они зависят от асимптотической скорости частицы относительно планеты. По понятным причинам их влияние лишает возможности эффективного использования гравитационных маневров. В работе представлены обобщенные оценки размеров околопланетных областей (плоских вращающихся синхронно с малым телом «пертурбационных колец» или «пертурбационных оболочек» в трехмерном случае), попадание в которые является необходимым условием реализации гравитационных маневров. Детальный анализ показывает, что Нептун и Сатурн имеют характерные оболочки — полые сферы возмущений самых больших размеров в Солнечной системе, а Юпитер занимает в этом списке лишь четвертое место.
Боровин Г.К., Голубев Ю.Ф., Грушевский А.В., Тучин А.Г. Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе.Математическое моделирование и численные методы, 2023, № 4, с. 64–73.
doi: 10.18698/2309-3684-2022-2-102113
С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.
Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115
519.6 Численное решение уравнений смешанного типав неограниченной области на плоскости
doi: 10.18698/2309-3684-2023-3-105124
Целью является построение и реализация алгоритма нахождения численного решения задачи для уравнений смешанного типа в неограниченной области. Рассматриваются задачи, в которых исследуемый процесс описывается в некоторой ограниченной области уравнением теплопроводности или волновым, а вне нее — уравнением Лапласа. Поставлены необходимые дополнительные условия в нуле, на бесконечности и условия сопряжения на границе внутренней области. Описан алгоритм нахождения численного решения задачи с волновым уравнением в ограниченной области в одномерном и двумерном случаях, задач с уравнением теплопроводности или волновым в двумерном случае. Разностные схемы построены интегро–интерполяционным методом. Задача решается в ограниченной области. На ее границе поставлены нелокальные граничные условия так, что решение поставленной задачи в ограниченной области совпадает с проекцией на нее решения задачи в неограниченной области. При этом для решения введена искусственная граница в части области, в которой процесс описывается уравнением Лапласа. Построены итерационный алгоритм и алгоритм с нелокальным граничным условием. Представлены результаты вычислений для примеров в различных областях
Галанин М.П., Ухова А.Р. Численное решение уравнений смешанного типа в неограниченной области на плоскости. Математическое моделирование и численные методы, 2023, № 3, с. 105–124.
doi: 10.18698/2309-3684-2022-1-314
Проведено численное моделирование процессов генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Примененные численные методы основаны на приближении медленно-меняющихся амплитуд и однонаправленном приближении, применимом для упрощения волнового уравнения с нелинейной поляризацией в диспергирующей среде. При одинаковых условиях эксперимента проведено сравнение результатов этих приближений. Сравнительный анализ показывает, что вплоть до 10 фс длительности основного импульса оба приближенных метода описывают этот процесс преобразования частоты практически одинаково, но ниже 10 фс наблюдается расхождение результатов. Сравнение проводилось, главным образом по формированию временного профиля импульса второй гармоники и её эффективности. Представлена также методика получения временных профилей импульса второй гармоники при использовании однонаправленного приближения, где падающее поле используется целиком, как в спектральной, так и во временной области расчета. При использовании приближения медленно-меняющихся амплитуд учтено влияние дисперсии до третьего порядка малости.
Рузиев З.Дж., Собиров О.И., Корабоев К.А., Сапаев У.К. Численное моделирование генерации второй гармоники ультракоротких лазерных импульсов в нелинейных фотонных кристаллах. Математическое моделирование и численные методы, 2022, № 1, с. 3–14.
doi: 10.18698/2309-3684-2022-3-1832
Рассматривается нелинейная колебательная система, описываемая обыкновенными дифференциальными уравнениями с переменными коэффициентами. Предполагается, что на рассматриваемом интервале времени решение системы является достаточно гладкими — без разрывов, столкновений и бифуркаций. Из неоднородной системы уравнений выделяются в явном виде члены, линейно зависящие от координат, скоростей и ускорений и члены, зависящие от этих переменных нелинейно. Предлагается новый подход для численного решения шаговым методом начальной задачи, описываемой такой системой обыкновенных дифференциальных уравнений второго порядка. На шаге интегрирования неизвестные функции представляются в виде суммы функций, удовлетворяющих начальным условиям: линейного решения Эйлера и нескольких заданных корректирующих функций в виде полиномов второй и выше степеней с неизвестными коэффициентами. Дифференциальные уравнения на шаге удовлетворяются приближённо в смысле слабого решения по методу Галеркина на системе корректирующих функций. Получаются алгебраические уравнения с нелинейными членами, которые решаются методом итераций, начиная в первом приближении с линейного решения. Полученное решение в конце данного шага используется в качестве начальных условий на последующем шаге. В качестве примера рассмотрено одно однородное дифференциальное уравнение второго порядка без первой производной с сильной кубической нелинейностью по координате (при максимальной амплитуде нелинейная сила в два раза превышает линейную силу). Это уравнение имеет точное периодическое решение в виде интеграла энергии консервативной системы, которое используется для оценки точности численных решений, полученных методами Галеркина, Рунге-Кутта и Адамса второго порядка, а также методами Radau5 и BDF на различных интервалах времени (до 8000 периодов свободных колебаний системы) при использовании различных постоянных шагов интегрирования (от 0,0025 долей периода). При этом в методе Галеркина на каждом шаге использовалось четыре одинаковых корректирующих функций в виде полиномов от второй до пятой степеней. Показано, что на больших интервалах времени вычислений метод Галеркина обладает более высокой точностью по сравнению с другими рассмотренными численными методами. Поэтому он может быть использован для численного решения нелинейных задач, в которых требуется решать их на больших интервалах времени; например при расчете установившихся предельных циклов нелинейных колебаний и хаотических нелинейных колебаний со странными аттракторами.
Русских С.В., Шклярчук Ф.Н. Применение одношагового метода Галеркина для решения системы обыкновенных дифференциальных уравнений с начальными условиями. Математическое моделирование и численные методы, 2022, № 3, с. 18–32.
004.942 Математическая модель архитектуры комплекса средств распределенного проектирования
doi: 10.18698/2309-3684-2024-1-110123
Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.
Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.
doi: 10.18698/2309-3684-2024-2-316
В исследовании рассмотрена проблема оптимизации системы обнаружения трещин лопаток газовых турбин. В качестве объекта исследования рассмотрена оболочка капсулы системы обнаружения повреждений, находящаяся в контакте с телом лопатки и под действием внутреннего давления. Задача исследования была посвящена вопросу математического моделирования оптимального давления в капсулах системы обнаружения повреждений. В рамках решения проблемы исследования проведена математическая постановка задачи оптимизации нелинейной функции давления при наличии ограничений на варьируемые параметры: толщину стенки и наружный диаметр цилиндрической оболочки капсулы. Построение целевой функции оптимизации проводилось на основании условия равновесия элемента оболочки в области раскрытия трещины турбинной лопатки, критерия предельного состояния с использованием теории прочности Треска-Сен-Венана. Методика исследования строилась с использованием приближенного разложения функции напряжений в ряд Тейлора, применением метода множителей Лагранжа, теоремы Куна-Таккера. При решении задачи условной оптимизации проанализированы случаи нарушения условий регулярности ограничивающих функций. По результатам расчета минимальное значение требуемого давления для разрушения оболочки капсулы в случае раскрытия берегов трещины турбинной лопатки достигается при максимальном значении наружного диаметра оболочки и минимальной толщине ее стенки. По данным тестового расчета графически представлена область допустимых решений оптимизационной задачи, и показаны линии уровня целевой функции оптимизации давления. Построенная математическая модель и алгоритм позволят автоматизировать процесс расчета требуемого давления в капсулах системы обнаружения трещин лопаток турбин и получить оценку минимального значения давления при наличии ограничений на толщину стенки и наружный диаметр оболочки капсулы.
Андрианов И.К., Чепурнова Е.К. Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин. Математическое моделирование и численные методы, 2024, № 2, с. 3–16.
doi: 10.18698/2309-3684-2024-1-93109
При развитии методов прогнозирования существенное значение приобретает исключение из исходной информации и исследуемых процессов случайных эффектов. Эти эффекты связаны не только с невозможностью учета всех факторов, но и с тем, что часть из них нередко совсем не принимаются во внимание. Не стоит забывать и про случайные погрешности измерений. В прогнозируемых величинах вследствие указанных эффектов создается некий случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, повысить достоверность и оправдываемость прогнозов. В статье рассмотрены принципы фильтрации данных в масштабе реального времени. Приводится постановка задачи, а также основные критерии оценок, которые должны выполняться для получения удовлетворительного результата. Разбирается принцип работы двух наиболее распространённых видов фильтров – абсолютно оптимальных и условно оптимальных, описываются их достоинства и недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с двумя датчиками. Представлены некоторые выводы и рекомендации о том, в каких случаях лучше использовать тот или иной фильтр.
Валишин А.А., Запривода А.В., Клонов А.С. Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывнодискретной фильтрации случайных процессов в реальном времени. Математическое моделирование и численные методы, 2024, № 1, с. 93–109.
doi: 10.18698/2309-3684-2024-3-8199
Рассматривается задача моделирования продольного движения самолета транспортной категории и параметрическая идентификация аэродинамических характеристик продольного движения: составляющих безразмерных коэффициентов аэродинамической подъемной силы и момента тангажа. Задача решается в классе модульных полуэмпирических динамических моделей, созданных объединением теоретического и нейросетевого моделирования. Работоспособность и практическая значимость моделей подтверждается результатами вычислительных экспериментов. Разработка нейросетевой модели продольного движения самолета выполнена на языке Python с использованием открытой программной библиотеки Tensorflow для машинного обучения и высокоуровневого API Keras в составе Tensorflow.
Крееренко С.С., Крееренко О.Д. Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow. Математическое моделирование и численные методы, 2024, № 3, с. 81–99.