Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.6:621.791.05+544.015.4 Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава

Исаев В. И. (ИТПМ), Черепанов А. Н. (ИТПМ), Шапеев В. П. (ИТПМ/Новосибирский государственный университет)


doi: 10.18698/2309-3684-2023-1-8191


Предложена самосогласованная термокинетическая модель кристаллизации бинарного сплава в сварочном шве, модифицированного наноразмерными инокуляторами, введенными в сварочную ванну при лазерной сварке. Сформулированная комплексная модель процесса сварки однородных металлов описывает теплофизические процессы формирования макроскопических параметров сварного шва, его структуру в зависимости от режимов сварки и свойств наномодифицирующих порошков (краевого угла смачиваемости, концентрации модифицирующей добавки). Она основана на теплофизической модели воздействия лазерного излучения на металл при лазерной сварке металлических пластин, дополненной неравновесной моделью гетерогенного зарождения и роста кристаллической фазы на введенных в сварочную ванну модифицирующих наночастицах в процессе остывания и кристаллизации расплава в сварочном шве. Применением метода коллокации и наименьших квадратов проведено численное моделирование сварки встык пластин из бинарного сплава алюминия. Приведены поле температуры в изделии в процессе сварки, форма поперечного сечения шва, совпадающая с формой поперечного сечения сварочной ванны, и количественные характеристики его кристаллической структуры, полученные в результате моделирования. Исследовано влияние краевого угла смачивания наночастиц расплавом и их массовой концентрации на характерный размер кристаллического зерна в сварочном шве.


Исаев В.И., Черепанов А.Н., Шапеев В.П. Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава. Математическое моделирование и численные методы, 2023, No 1, с. 81–91.



517 Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул

Висам Махди Абас А. (ЮРГПУ (НПИ)), Арутюнян Р. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-6885


Рассматриваются вопросы анализа нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Используется математическая модель типа вход–выход, не учитывающая конкретную физическую природу динамического процесса, которую принято называть черным ящиком. Методы статьи применимы для основных вариантов интегрально–функционального разложения Вольтерры, в том числе для случая стационарных динамических систем, векторного входного сигнала. Дан пример задачи оптимизации на основе рассматриваемых интегростепенных рядов. Отмечено, при анализе и оптимизации нелинейных динамических систем методом интегро–функциональных рядов может возникнуть проблема вычисления многомерных интегралов. Рассмотрено применение для задач анализа нелинейных динамических и стационарных систем комбинированного метода, основанного на интегростепенном ряде Вольтерры и сеточных методах решения соответствующих одно- и многомерных интегральных уравнений. Рассматривается случай, когда известен некоторый набор реализаций входного и выходного сигналов, которые могут быть в принципе случайными процессами. По этим данным осуществляется отыскание ядер в разложении на основе решения соответствующего линейного многомерного интегрального уравнения Фредгольма I рода. Соответствующая задача относится к некорректно поставленным и для ее решения применен метод регуляризации по А.Н. Тихонову. В статье предлагается применять в данной задаче в случае больших размерностей метод квази Монте–Карло, характерный удовлетворительной сходимостью. Исследованы вычислительные качества в рассматриваемой задаче полустатистического метода решения интегральных уравнений большой размерности, метод квази Монте-–Карло, метод центральных прямоугольников (ячеек) и квадратурные формулы Гаусса–Лежандра. Рассматриваемые подходы позволяют расширить круг решаемых задач теории анализа и оптимизации систем, поскольку предложены методы, практически приемлемые при больших размерностях интегральных уравнений в условиях ограниченной информации о системе.


Абас Висам Махди Абас, Арутюнян Р.В. Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Математическое моделирование и численные методы, 2021, № 2, с. 68–85.



519.87 Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции

Бобров В. А. (МПГУ), Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-4-12134


В среде клеточных автоматов рассматривается дискретный аналог классической модели конкуренции А. Лотки – В. Вольтерры. Известно, что в классической модели тип ее эволюции во времени определяется в первую очередь принадлежностью коэффициентов двойных стандартов тем или иным диапазонам их возможных значений. Показано, что такая же ситуация имеет место и для дискретной модели. Для классической модели имеет место эффект мягкой силы. При рассмотрении модели применительно к социальным системам, она превращается в кооперативную позиционную дифференциальную игру, ограничениями которой становится исходная система уравнений конкуренции А. Лотки – В. Вольтерры, а управлениями — коэффициенты двойных стандартов. Эффект мягкой силы состоит в том, что стороны склонны сравнивать конкурентное давление на них популяции соперника с конкурентным давлением внутри собственной популяции и могут принять меньшее давление соперника за благосклонное его к ним отношение, а большее — за враждебное проявление. Тогда как на самом деле — сравнение внешнего конкурентного давления с внутренним в данной игре не информативно — все зависит исключительно от коэффициентов двойных стандартов, которые в этой игре являются управлениями и поэтому не известны сопернику. Имитационные эксперименты с аналогом модели конкуренции, реализованным в среде клеточных автоматов, показывают, что в дискретной модели эффект мягкой силы также имеет место


Бобров В.А., Бродский Ю.И. Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции. Математическое моделирование и численные методы, 2021, № 4, с. 121–134.



519.6 Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах

Белотелов Н. В. (Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН/МГТУ им.Н.Э.Баумана), Павлов С. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-105119


Необходимость разработки формализованных компьютерно-ориентированных подходов к проведению междисциплинарных исследований межкультурных взаимодействий является актуальной задачей. В статье описывается подход к разработке агентных моделей межкультурных взаимодействий, основанный на использовании неметризуемых хаусдорфовых пространств с использованием генетических алгоритмов для введения динамических изменений в рассматриваемой структуре культурных агентов. В статье рассматривается прототип агентной модели, в которой состояние агентов описывается в хаусдорфовых пространствах. С помощью выбора опорных точек для каждого агента строится функция Урысона, которая позволяет вводить предпочтения агентов. Далее с помощью технологии генетических алгоритмов, удается получить тактовую динамику изменения всей системы агентов. В статье приводится описание некоторых имитационных экспериментов. Обсуждаются возможные перспективы развития данного подхода.


Белотелов Н.В, Павлов С.А. Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах. Математическое моделирование и численные методы, 2021, № 3, с. 105–119.



519.6:629.7.02 Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Резников А. О. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-6273


Построена модель генетического алгоритма с бинарным кодированием с независимой селекцией Шеффера, позволяющая производить поиск глобального оптимума по нескольким критериям без их скаляризации. При расчетах учитывается область всех возможных перемещений исполнительных органов в условиях неопределённых внешних воздействий в некотором, заранее заданном, диапазоне. Разработан алгоритм, позволяющий хранить промежуточные результаты для устранения проблемы большого количества повторяющихся расчетов в ходе работы эволюционного алгоритма, что позволило снизить время вычислений. Эффективность работы оптимизационного алгоритма демонстрируется на примере решения модельной задачи.


Бушуев А.Ю., Резников А.О. Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов. Математическое моделирование и численные методы, 2021, № 3, с. 62–73.



551.513 Глобальная климатическая модель с учетом биогеохимического углеродного цикла растительности суши

Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-2-3853


Целью данной работы является построение глобальной модели цикла углерода. Модель описывает продукционный процесс лесных экосистем с учетом сезонного хода климатических факторов. Она предназначена для моделирования длительного периода времени в составе глобальной климатической модели промежуточной сложности. Установлено, что глобальные характеристики климатической системы выходят на установившейся режим за время около 2000 лет и модель устойчиво работает. Приведены временные и пространственные распределения полученных климатических характеристик и биогеохимического углеродного цикла наземной растительности.


Пархоменко В.П. Глобальная климатическая модель с учетом биогеохимического углеродного цикла растительности суши. Математическое моделирование и численные методы, 2021, № 2, с. 38–53.



539.3 Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Богданов И. О. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана), Анохин Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-3854


Рассматривается задача моделирования потери устойчивости конструкций из композиционных материалов вследствие нестационарных тепловых воздействий на них, с учетом температурной зависимости свойств компонентов композита. Сформулированы системы уравнений для расчета основного и варьированного состояний конструкции. Предложена классификация задач устойчивости. Описано применение метода конечных элементов для определения критической температуры и отвечающей ей формы потери устойчивости конструкции. Сформулирована локальная обобщенная задача на собственные значения и произведена верификация предложенной модели с помощью программного комплекса SMCM, разработанного в НОЦ «Симплекс» МГТУ им. Н.Э. Баумана, а также с помощью ПК ANSYS. Показано, что результаты расчета собственных форм и собственных значений в тестовой задаче достаточно хорошо совпадают.


Димитриенко Ю.И., Богданов И.О., Юрин Ю.В., Маремшаова А.А., Анохин Д. Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций. Математическое моделирование и численные методы, 2024, № 1, с. 38–54.



519.8 «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-102113


С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.


Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115



519.2 Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения

Облакова Т. В. (МГТУ им.Н.Э.Баумана), Алексеев Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-4-4862


Работа посвящена сравнению различных методов моделирования и применения фрактального броуновского движения в задачах анализа временных рядов. Реализованы программные модули, генерирующие траектории фрактального броуновского движения с использованием методов стохастического представления, разложения Холецкого и Дэвиса-Харта. Проведено сравнение алгоритмов с точки зрения их сложности и качества получаемых траекторий. Показатель Хёрста оценивался методами Минковского и R/S анализа. Предложена и реализована аппроксимация временных рядов фрактальным броуновским движением с помощью степенной функции для последующего применения алгоритма линейного прогнозирования, основанного на теореме о нормальной корреляции. Установлено, что с помощью представленной аппроксимации удается добиться удовлетворительного прогноза валютного курса на несколько значений вперед.


Облакова Т.В., Алексеев Д.С. Сравнительный анализ методов моделирования и прогнозирования временных рядов на основе теории фрактального броуновского движения. Математическое моделирование и численные методы, 2022, № 4, с. 48–62



<< 3 >>