Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.6:621.791.05+544.015.4 Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава

Исаев В. И. (ИТПМ), Черепанов А. Н. (ИТПМ), Шапеев В. П. (ИТПМ/Новосибирский государственный университет)


doi: 10.18698/2309-3684-2023-1-8191


Предложена самосогласованная термокинетическая модель кристаллизации бинарного сплава в сварочном шве, модифицированного наноразмерными инокуляторами, введенными в сварочную ванну при лазерной сварке. Сформулированная комплексная модель процесса сварки однородных металлов описывает теплофизические процессы формирования макроскопических параметров сварного шва, его структуру в зависимости от режимов сварки и свойств наномодифицирующих порошков (краевого угла смачиваемости, концентрации модифицирующей добавки). Она основана на теплофизической модели воздействия лазерного излучения на металл при лазерной сварке металлических пластин, дополненной неравновесной моделью гетерогенного зарождения и роста кристаллической фазы на введенных в сварочную ванну модифицирующих наночастицах в процессе остывания и кристаллизации расплава в сварочном шве. Применением метода коллокации и наименьших квадратов проведено численное моделирование сварки встык пластин из бинарного сплава алюминия. Приведены поле температуры в изделии в процессе сварки, форма поперечного сечения шва, совпадающая с формой поперечного сечения сварочной ванны, и количественные характеристики его кристаллической структуры, полученные в результате моделирования. Исследовано влияние краевого угла смачивания наночастиц расплавом и их массовой концентрации на характерный размер кристаллического зерна в сварочном шве.


Исаев В.И., Черепанов А.Н., Шапеев В.П. Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава. Математическое моделирование и численные методы, 2023, No 1, с. 81–91.



338.001.36 Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды

Рогулин Р. С. (ФГБОУ ВО «ВВГУ»)


doi: 10.18698/2309-3684-2023-2-129154


Формирование цепочки поставок сырья тесно связано с производственными проблемами деревообрабатывающих предприятий. Построение цепочек поставок сырья и оптимальный расчет ежедневного производства были актуальными темами с начала второй промышленной революции. В данной статье рассматривается предприятие Приморского края деревообрабатывающей промышленности, у которого нет делян в аренде. Цель работы состоит в том, чтобы решить проблему построения цепочки поставок сырья с учетом ежедневной загрузки производственных площадей и поиску оптимального решения. Источником сырья выступает товарно-сырьевая биржа, где лоты появляются ежедневно в случайном порядке в разных регионах добычи. В научной литературе существует множество способов расчета наилучшего значения прибыли с учетом множества ограничений, но в них не учтены многие важные для деревообрабатывающих предприятий особенности. Исходя из обзора научной литературы в данной статье представлена математическая модель, которая выступает в роли механизма по принятию решений в каждый отдельный день, и она отличается тем, что может учитывать коэффициент полезного объема сырья, который дойдет до склада и время в пути. Тестирование модели проводилось на данных Российской товарно-сырьевой биржи и компании в Приморском крае. Результатом тестирования модели является вычисленная оптимальная траектория прибыли для каждого набора данных об объемах сырья, времени лотов в пути, а также множество важных показателей для любого производства: объем прибыли, объем производства товаров. Анализ полеченных решений показал, что существуют сложности в планировании цепочек поставок и объемов производства. Проанализированы регионы в качестве источников сырья, из каких регионов и когда стоит закупать сырье. Приведены недостатки и положительные стороны математической модели.


Рогулин Р.С. Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды. Математическое моделирование и численные методы, 2023,№ 2, с. 129–154.



519.6 Агентная модель двух конкурирующих популяций с учетом структурности

Белотелов Н. В. (Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН/МГТУ им.Н.Э.Баумана), Бровко А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-3-7183


В статье описывается агентная имитационная модель двух популяций, конкурирующих за один ресурс. В модели считается, что особь погибает, если её масса-энергия становится неположительной. Предполагается, что особи каждой из рассматриваемых популяций могут образовывать стаи, это позволяет популяциям повышать свою конкурентоспособность. В модели это формализуется посредством возможности организовывать сети, связывающие особей одного вида. При этом особи могут образовывать лишь определенное количество связей с соседями. В модели для описания этого вводится понятие «валентности». Предполагается, что внутри каждой сети происходит мгновенное перераспределение ресурса по всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели описана структура программы, с помощью которой проводились имитационные эксперименты. В результате проведенных имитационных экспериментов было получено следующее. Если ресурс высокопродуктивный, то в процессе конкурентного взаимодействия побеждает популяция, агенты, которой имеют большую «валентность». А в случае низко продуктивного ресурса победу в конкурентном взаимодействии одерживают особи популяции, обладающей меньшей «валентностью». Это связано с тем, что более сложные структуры требуют большей энергии поддержания стаи.


Белотелов Н.В., Бровко А.В. Агентная модель двух конкурирующих популяций с учетом их структурности. Математическое моделирование и численные методы, 2022, № 3, с. 71–83.



519.8 Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава

Тягунов А. Г. (Уральский Федеральный Университет), Зейде К. М. (Universidad Politècnica Salesiana/University of Genoa), Мильдер О. Б. (Уральский Федеральный Университет), Тарасов Д. А. (Уральский Федеральный Университет)


doi: 10.18698/2309-3684-2023-2-332


В работе производится построение математической модели термо-временной эволюции кластера в расплаве жаропрочного никелевого сплава ЖС6У. Формулируется начально-краевая задача с движущейся границей, для решения которой применяется численное моделирование методом трассировки траектории частиц, а для описания эволюционных процессов используется ряд классических физических теорий. Для проверки точности модели привлекается физический эксперимент построения политерм и изотерм электросопротивления рассматриваемого сплава. Подтверждено, что модель броуновской диффузии и теория проводимости Друде применимы для описания, как временной, так и температурной эволюции кластера. Так же оправдал себя подход к моделированию на основе «твердых шаров». По результатам моделирования, во временном диапазоне от 1690 до 1752 К количество частиц в составе кластера меняется от 5000 до 2000, средняя динамическая вязкость кластера изменяется от 3 до 2 *1010 Па*с, однако предполагается, что центральная часть существенно плотнее периферии, радиус кластера изменяется от 24 до 18, радиус свободной зоны вокруг кластера – от 56 до 43. Определены направления дальнейшего развития модели.


Тягунов А.Г., Зейде К.М., Мильдер О.Б., Тарасов Д.А. Диффузионная модель эволюции кластера в металлическом расплаве жаропрочного никелевого сплава. Математическое моделирование и численные методы, 2023, № 2, с. 3–32.



521.19 Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе

Боровин Г. К. (Институт прикладной математики им. М.В. Келдыша РАН), Голубев Ю. Ф. (Институт прикладной математики им. М.В. Келдыша РАН), Грушевский А. В. (Институт прикладной математики им. М.В. Келдыша РАН), Тучин А. Г. (Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2023-4-6473


Одним из видов гравитационного рассеяния в Солнечной системе в рамках модели круговой ограниченной задачи трех тел (CR3BP) являются гравитационные маневры «частиц незначительной массы» (космические аппараты, астероиды, кометы и др.). Для их описания полезна физическая аналогия с рассеянием пучков заряженных альфа-частиц в кулоновском поле. Однако, в отличие от рассеяния заряженных частиц, существуют внешние ограничения на возможность выполнения гравитационных маневров, связанные с ограниченным размером сферы влияния планеты. В то же время из литературы по CR3BP известны внутренние ограничения на возможность исполнения гравитационных маневров, оцениваемые эффективными радиусами планет (включая гравитационный захват планетой, попадающей в нее). Они зависят от асимптотической скорости частицы относительно планеты. По понятным причинам их влияние лишает возможности эффективного использования гравитационных маневров. В работе представлены обобщенные оценки размеров околопланетных областей (плоских вращающихся синхронно с малым телом «пертурбационных колец» или «пертурбационных оболочек» в трехмерном случае), попадание в которые является необходимым условием реализации гравитационных маневров. Детальный анализ показывает, что Нептун и Сатурн имеют характерные оболочки — полые сферы возмущений самых больших размеров в Солнечной системе, а Юпитер занимает в этом списке лишь четвертое место.


Боровин Г.К., Голубев Ю.Ф., Грушевский А.В., Тучин А.Г. Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе.Математическое моделирование и численные методы, 2023, № 4, с. 64–73.



004.89 Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow

Крееренко С. С. (ПАО «ТАНТК им. Г.М. Бериева»), Крееренко О. Д. (ПАО «ТАНТК им. Г.М. Бериева»)


doi: 10.18698/2309-3684-2024-3-8199


Рассматривается задача моделирования продольного движения самолета транспортной категории и параметрическая идентификация аэродинамических характеристик продольного движения: составляющих безразмерных коэффициентов аэродинамической подъемной силы и момента тангажа. Задача решается в классе модульных полуэмпирических динамических моделей, созданных объединением теоретического и нейросетевого моделирования. Работоспособность и практическая значимость моделей подтверждается результатами вычислительных экспериментов. Разработка нейросетевой модели продольного движения самолета выполнена на языке Python с использованием открытой программной библиотеки Tensorflow для машинного обучения и высокоуровневого API Keras в составе Tensorflow.


Крееренко С.С., Крееренко О.Д. Моделирование и параметрическая идентификация аэродинамических характеристик самолета транспортной категории с использованием нейросетей в среде Тensorflow. Математическое моделирование и численные методы, 2024, № 3, с. 81–99.



519.17 Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания

Бодряков В. Ю. (Уральский государственный педагогический университет)


doi: 10.18698/2309-3684-2024-2-6884


В статье впервые получено аналитическое решение задачи о преследовании в системе «хищник–жертва» в евклидовом 3D-пространстве для произвольных начальных углов прицеливания. В процессе преследования жертва движется равномерно и прямолинейно, постоянный по модулю вектор скорости хищника нацелен на жертву. Точное решение задачи получено в форме параметрически заданной пространственной кривой преследования. Получены точные выражения для других существенных характеристик процесса преследования (времени преследования, координат жертвы, длины кривой преследования, и др.). Проведено реалистичное компьютерное моделирование взаимного движения хищника и жертвы в пространстве и во времени; определены характерные параметры процесса преследования. Отмечен значительный дидактический потенциал решенной задачи о 3D-преследовании для подготовки будущих специалистов в области механики и управления; задача может служить содержательной основой для выполнения обучающимися исследовательских проектов, курсовых и выпускных квалификационных работ.


Бодряков В.Ю. Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания. Математическое моделирование и численные методы, 2024, № 2, с. 68-84.



519.6, 621.4 Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин

Андрианов И. К. (Комсомольский-на-Амуре государственный технический университет), Чепурнова Е. К. (Комсомольский-на-Амуре государственный технический университет)


doi: 10.18698/2309-3684-2024-2-316


В исследовании рассмотрена проблема оптимизации системы обнаружения трещин лопаток газовых турбин. В качестве объекта исследования рассмотрена оболочка капсулы системы обнаружения повреждений, находящаяся в контакте с телом лопатки и под действием внутреннего давления. Задача исследования была посвящена вопросу математического моделирования оптимального давления в капсулах системы обнаружения повреждений. В рамках решения проблемы исследования проведена математическая постановка задачи оптимизации нелинейной функции давления при наличии ограничений на варьируемые параметры: толщину стенки и наружный диаметр цилиндрической оболочки капсулы. Построение целевой функции оптимизации проводилось на основании условия равновесия элемента оболочки в области раскрытия трещины турбинной лопатки, критерия предельного состояния с использованием теории прочности Треска-Сен-Венана. Методика исследования строилась с использованием приближенного разложения функции напряжений в ряд Тейлора, применением метода множителей Лагранжа, теоремы Куна-Таккера. При решении задачи условной оптимизации проанализированы случаи нарушения условий регулярности ограничивающих функций. По результатам расчета минимальное значение требуемого давления для разрушения оболочки капсулы в случае раскрытия берегов трещины турбинной лопатки достигается при максимальном значении наружного диаметра оболочки и минимальной толщине ее стенки. По данным тестового расчета графически представлена область допустимых решений оптимизационной задачи, и показаны линии уровня целевой функции оптимизации давления. Построенная математическая модель и алгоритм позволят автоматизировать процесс расчета требуемого давления в капсулах системы обнаружения трещин лопаток турбин и получить оценку минимального значения давления при наличии ограничений на толщину стенки и наружный диаметр оболочки капсулы.


Андрианов И.К., Чепурнова Е.К. Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин. Математическое моделирование и численные методы, 2024, № 2, с. 3–16.



519.6 Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде

Хайиткулов Б. Х. (Национальный университет Узбекистана)


doi: 10.18698/2309-3684-2024-1-5566


Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие ― обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в прямоугольнике. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалась. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения ностационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением теплопроводности с постоянными коэффициентами, заданными для первой краевой задачи. Краевая задача изучается для двумерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


Хайиткулов Б. Х. Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде. Математическое моделирование и численные методы, 2024, № 1, с. 55–66.



<< 3 >>