519.63 Modification of aluminum by laser shock wave detected in atomistic modeling

Perov E. A. (JIHT), Zhakhovsky V. V. (Dukhov Automatics Research Institute/JIHT), Алимович N. A. (L.D. Landau Institute for Theoretical Physics RAS), Shepelev V. V. (Institute for Computer Aided Design of the Russian Academy of Sciences), Fortova S. V. (Institute for Computer Aided Design of the Russian Academy of Sciences), Doludenko A. N. (JIHT)

FEMTOSECOND LASER PULSE, SHOCK WAVE, PLASTIC DEFORMATIONS, MOLECULAR DYNAMIC MODELING, EMBEDDED ENERGY, LASER THERMAL HARDENING


doi: 10.18698/2309-3684-2023-4-7492


Plastic deformations are the basis of such industrial technology as laser thermal hardening or laser pinning (LSP, laser shock peening). In this paper, the possibility of hardening the surface layer of an aluminum sample irradiated by a single femtosecond laser pulse is investigated by the method of classical molecular dynamics. Several initialstates of the film are simulated; three orientations of the crystal lattice are investigated — [1, 0, 0] (the first orientation of the crystal lattice), [1, 1, 0] (the second orientation of the crystal lattice), [1, 1, 1] (the third orientation of the crystal lattice). A numerical study of the effect of various values of the invested energy in the range from 120,98 J/m2 to 2540,01 J/m2 of a laser pulse on the depth of plastic deformations affecting the hardening of the material under study was carried out. The energy values were selected in such a way that the plastic front of the UV (shock wave) stopped before it reached the right boundary of the simulated film. If this condition is not observed, then the dependence cannot be considered correctly constructed, since the stretching wave reflected from the right boundary of the sample will slow down the plastic shock front, acting as an unloading wave. With the help of this dependence, the threshold value of the invested energy is determined, when exceeded, aluminum begins to deform plastically.


Zhakhovskii V.V., Inogamov N.A., Nishihara K. New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse. JETP Letters, 2008, vol. 87, pp. 423–427. DOI: 10.1134/S0021364008080079
Inogamov N.A., Petrov Y.V., Khokhlov V.A., Anisimov S.I., Zhakhovsky V.V., Demaske B.J., Oleynik I.I., Ashitkov S.I., Faenov A.Y., Pikuz T.A., Skobelev I.Y., Agranat M.B., Fortov V.E., Emirov Y.N., Ishino M., Tanaka M., Hasegawa N., Nishikino M., Ohba T., Kaihori T., Ochi Y., Imazono T., Fukuda Y., Kando M., Kawachi T., Tamotsu S., Kato Y. Surface Nanodeformations Caused by Ultrashort Laser Pulse. Engineering Failure Analysis, 2015, vol. 47, pp. 328–337. DOI: 10.1016/j.engfailanal.2013.12.009
Bonse J., Kruger J., Hohm S., Rosenfeld A. Femtosecond laser-induced periodic surface structures. Journal of Laser Applications, 2012, vol. 24, iss. 4, art. no. 042006. DOI: https://doi.org/10.2351/ 1.4712658
Inogamov A., Zhakhovskii V.V., Khokhlov V.A. Dynamics of gold ablation into water. Journal of Experimental and Theoretical Physics, 2018, vol. 127, pp. 79–106. DOI: 10.1134/S1063776118070075
Petrov Yu.V., Khokhlov V.A., Zhakhovsky V.V., Inogamov N.A. Hydrodynamic phenomena induced by laser ablation of metal into liquid. Applied Surface Science, 2019, vol. 30, pp. 285–297. DOI: https://doi.org/10.1016/j.apsusc.2019.05.325
Maciulevicius M., Vinciunas A., Brikas M., Butsen A., Tarasenka N., Tarasenko N., Raciukaitis G. On-line characterization of gold nanoparticles generated by laser ablation in liquids. Physics Procedia, 2013, vol. 41, pp. 531–538. DOI:https://doi.org/10.1016/j.phpro.2013.03.112
Liao Y., Ye C., Cheng G.J. A review: Warm laser shock peening and related laser processing technique. Optics & Laser Technology, 2016, vol. 78, Part A, pp. 15–24. DOI: https://doi.org/10.1016/j.optlastec.2015.09.014
Kim J., Kim Y., Kim J. Effects of simulation parameters on residual stresses for laser shock peening finite element analysis. Journal of Mechanical Science and Technology, 2013, vol. 27, pp. 2025–2034. DOI: 10.1007/s12206-012-1263-0
LSP Technologies: Introduction to Laser Peening. URL: https://www.lsptechnologies.com/wp-content/uploads/2019/03/Intro-to-LaserPeening-Webinar.pdf
Tsujino M., Sano T., Ogura T., Okoshi M., Inoue N., Ozaki N., Kodama R., Kobayashi K.F., Hirose A. Formation of High-Density Dislocations and Hardening in Femtosecond-Laser-Shocked Silicon. Applied Physics Express, 2012, vol. 5, no. 2, art. no. 022703. DOI: 10.1143/APEX.5.022703
Matsuda T., Sano T., Arakawa K., Hirose A. Multiple-shocks induced nanocrystallization in iron. Applied Physics Letters, 2014, vol. 105, iss. 2, art. no. 021902. DOI: 10.1063/1.4890389
Sano T., Eimura T., Kashiwabara R., Matsuda T., Isshiki Y., Hirose A., Tsutsumi S., Arakawa K., Hashimoto T., Masaki K., Sano Y. Femtosecond laser peening of 2024 aluminum alloy without a sacrificial overlay under atmospheric conditions. Journal of Laser Applications, 2017, vol. 29, iss. 1, art. no. 012005. DOI: https://doi.org/10.2351/1.4967013 Inogamov N.A., Petrov Y.V., Perov E.A., Zhakhovsky V.V., Shepelev V.V., Fortova S.V. Laser Shock Wave: The Plasticity and Thickness of The Residual Deformation Layer and The Transition From The Elastoplastic to Elastic Propagation Mode. JETP Letters, 2022, vol. 115, no. 2, pp. 71–78. DOI: 10.1134/S0021364022020047
Hairer E., Lubich C., Wanner G. Geometric numerical integration illustrated by the Störmer–Verlet method. Acta Numerica, 2003, vol. 12, pp. 399–450. DOI:10.1017/S0962492902000144
Preparata F., Shamos M. Computational Geometry: An Introduction. Springer New York, 1985, 390 с.
Kittel Ch. Introduction to solid state physics. Ney York, Wiley, 1971, 766 p.
Heermann D.W. Computer Simulation Methods in Theoretical Physics. Springer, 1986, 148 p.
Volegov P.S., Gerasimov R.M., Davlyatshin R.P. Models of molecular dynamics: a review of EAM potentials. Part 1: Potentials for single-component systems. PNRPU Mechanics Bulletin, 2017, no. 4, pp. 214–327. DOI: 10.15593/perm.mech/2017.4.14
Volegov P.S., Gerasimov R.M., Davlyatshin R.P. Models of molecular dynamics: a review of EAM-potentials. Part 2. Potentials for multi-component systems. PNRPU Mechanics Bulletin, 2018, no. 2, pp. 114–132. DOI: 10.15593/perm.mech/2018.2.11
Zhakhovskii V.V., Inogamov N.A., Petrov Yu.V., Ashitkov S.I., Nishihara K. Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials. Applied Surface Science, 2009, vol. 255, iss. 24, pp. 9592–9596. DOI: 10.1016/j.apsusc.2009.04.082
Cheung P.S.Y. On the calculation of specific heats, thermal pressure coefficients and compressibilities in molecular dynamics simulations. Molecular Physics, vol. 33, iss. 2, pp. 519–526. DOI: 10.1080/00268977700100441
Clausius R. On a mechanical theorem applicable to heat. The Philosophical Magazine: A Journal of Theoretical Experimental and Applied Physics, 1870, vol. 40, iss. 265, pp. 122–127.
Kelchner C.L., Plimpton S.J., Hamilton J.C. Dislocation nucleation and defect structure during surface indentation. Physical Review B, 1998, vol. 58, art. no. 11085. DOI:https://doi.org/10.1103/PhysRevB.58.11085
Ubbelohde A.R. The Molten State of Matter. London, John Wiley & Sons, 1978, 454 p.
Kanel G.I., Razorenov S.V., Utkin A.V., Fortov V.E. Udarno-volnovye yavleniya v kondensirovannyh sredah [Shock wave phenomena in condensed media]. Moscow, Janus-K Publ., 1996, 408 p.


Перов E.А., Жаховский В.В., Иногамов Н.А., Шепелев В.В., Фортова С.В., Долуденко А.Н.. Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной. Математическое моделирование и численные методы, 2023, № 4, с. 74-92


Работа выполнена в рамках госзадания ИАП РАН (Шепелев В.В., Фортова С.В.), госзадания ИТФ им. Л.Д. Ландау РАН (Иногамов Н.А.) и госзадания ОИВТ РАН (Перов Е.А., Долуденко А.Н.).


Download article

Количество скачиваний: 49