Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



338.001.36 Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды

Рогулин Р. С. (ФГБОУ ВО «ВВГУ»)


doi: 10.18698/2309-3684-2023-2-129154


Формирование цепочки поставок сырья тесно связано с производственными проблемами деревообрабатывающих предприятий. Построение цепочек поставок сырья и оптимальный расчет ежедневного производства были актуальными темами с начала второй промышленной революции. В данной статье рассматривается предприятие Приморского края деревообрабатывающей промышленности, у которого нет делян в аренде. Цель работы состоит в том, чтобы решить проблему построения цепочки поставок сырья с учетом ежедневной загрузки производственных площадей и поиску оптимального решения. Источником сырья выступает товарно-сырьевая биржа, где лоты появляются ежедневно в случайном порядке в разных регионах добычи. В научной литературе существует множество способов расчета наилучшего значения прибыли с учетом множества ограничений, но в них не учтены многие важные для деревообрабатывающих предприятий особенности. Исходя из обзора научной литературы в данной статье представлена математическая модель, которая выступает в роли механизма по принятию решений в каждый отдельный день, и она отличается тем, что может учитывать коэффициент полезного объема сырья, который дойдет до склада и время в пути. Тестирование модели проводилось на данных Российской товарно-сырьевой биржи и компании в Приморском крае. Результатом тестирования модели является вычисленная оптимальная траектория прибыли для каждого набора данных об объемах сырья, времени лотов в пути, а также множество важных показателей для любого производства: объем прибыли, объем производства товаров. Анализ полеченных решений показал, что существуют сложности в планировании цепочек поставок и объемов производства. Проанализированы регионы в качестве источников сырья, из каких регионов и когда стоит закупать сырье. Приведены недостатки и положительные стороны математической модели.


Рогулин Р.С. Математическая модель формирования цепочек поставок сырья с товарно-сырьевой биржи в условиях риска с опорой на траекторию прибыли за предыдущие периоды. Математическое моделирование и численные методы, 2023,№ 2, с. 129–154.



519.63 Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной

Перов Е. А. (Объединенный институт высоких температур РАН), Жаховский В. В. (Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова/Объединенный институт высоких температур РАН), Иногамов Н. А. (Институт теоретической физики им. Л.Д. Ландау РАН), Шепелев В. В. (Институт автоматизации проектирования РАН), Фортова С. В. (Институт автоматизации проектирования РАН), Долуденко А. Н. (Объединенный институт высоких температур РАН)


doi: 10.18698/2309-3684-2023-4-7492


Пластические деформации лежат в основе такой промышленной технологии, как лазерное термоупрочнение или лазерный пиннинг (LSP, laser shock peening). В данной работе методом классической молекулярной динамики исследована возможность упрочнения поверхностного слоя алюминиевого образца, облученного единичным фемтосекундным лазерным импульсом. Рассмотрены три ориентации кристаллической решетки — [1, 0, 0] (первая ориентация кристаллической решетки), [1, 1, 0] (вторая ориентация кристаллической решетки), [1, 1, 1] (третья ориентация кристаллической решетки). Проведено численное исследование влияния различных величин вложенной энергии в диапазоне от 120,98 Дж/м2 до 2540,01 Дж/м2 лазерного импульса на глубину залегания пластических деформаций, влияющих на упрочнение исследуемого материала. Построена зависимость максимальной глубины залегания пластических деформаций от вложенной энергии. Значения энергий подобранны таким образом, что пластический фронт УВ (ударной волны) останавливался до того, как достигнет правой границы моделируемого образца. Необходимость соблюдения этого условия обусловлена тем фактом, что отразившаяся от правой границы образца волна растяжения может тормозить пластический ударный фронт, выступая в роли волны разгрузки. С помощью построенной в работе зависимости максимальной глубины залегания пластических деформаций от вложенной энергии определено пороговое значение вложенной энергии, при превышении которого алюминий начинает пластически деформироваться.


Перов E.А., Жаховский В.В., Иногамов Н.А., Шепелев В.В., Фортова С.В., Долуденко А.Н.. Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной. Математическое моделирование и численные методы, 2023, № 4, с. 74-92



519.6 Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла

Хайиткулов Б. Х. (Национальный университет Узбекистана)


doi: 10.18698/2309-3684-2023-1-3242


Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие — обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в параллелепипеде. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалось. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением конвекции-диффузии, заданным для первой краевой задачи. Краевая задача изучается для трёхмерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


Хайиткулов Б.Х. Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла. Математическое моделирование и численные методы, 2023, No 1, с. 32–42.



519.87 Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции

Бобров В. А. (МПГУ), Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-4-12134


В среде клеточных автоматов рассматривается дискретный аналог классической модели конкуренции А. Лотки – В. Вольтерры. Известно, что в классической модели тип ее эволюции во времени определяется в первую очередь принадлежностью коэффициентов двойных стандартов тем или иным диапазонам их возможных значений. Показано, что такая же ситуация имеет место и для дискретной модели. Для классической модели имеет место эффект мягкой силы. При рассмотрении модели применительно к социальным системам, она превращается в кооперативную позиционную дифференциальную игру, ограничениями которой становится исходная система уравнений конкуренции А. Лотки – В. Вольтерры, а управлениями — коэффициенты двойных стандартов. Эффект мягкой силы состоит в том, что стороны склонны сравнивать конкурентное давление на них популяции соперника с конкурентным давлением внутри собственной популяции и могут принять меньшее давление соперника за благосклонное его к ним отношение, а большее — за враждебное проявление. Тогда как на самом деле — сравнение внешнего конкурентного давления с внутренним в данной игре не информативно — все зависит исключительно от коэффициентов двойных стандартов, которые в этой игре являются управлениями и поэтому не известны сопернику. Имитационные эксперименты с аналогом модели конкуренции, реализованным в среде клеточных автоматов, показывают, что в дискретной модели эффект мягкой силы также имеет место


Бобров В.А., Бродский Ю.И. Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции. Математическое моделирование и численные методы, 2021, № 4, с. 121–134.



519.17 Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания

Бодряков В. Ю. (Уральский государственный педагогический университет)


doi: 10.18698/2309-3684-2024-2-6884


В статье впервые получено аналитическое решение задачи о преследовании в системе «хищник–жертва» в евклидовом 3D-пространстве для произвольных начальных углов прицеливания. В процессе преследования жертва движется равномерно и прямолинейно, постоянный по модулю вектор скорости хищника нацелен на жертву. Точное решение задачи получено в форме параметрически заданной пространственной кривой преследования. Получены точные выражения для других существенных характеристик процесса преследования (времени преследования, координат жертвы, длины кривой преследования, и др.). Проведено реалистичное компьютерное моделирование взаимного движения хищника и жертвы в пространстве и во времени; определены характерные параметры процесса преследования. Отмечен значительный дидактический потенциал решенной задачи о 3D-преследовании для подготовки будущих специалистов в области механики и управления; задача может служить содержательной основой для выполнения обучающимися исследовательских проектов, курсовых и выпускных квалификационных работ.


Бодряков В.Ю. Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания. Математическое моделирование и численные методы, 2024, № 2, с. 68-84.



517 Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул

Висам Махди Абас А. (ЮРГПУ (НПИ)), Арутюнян Р. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-6885


Рассматриваются вопросы анализа нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Используется математическая модель типа вход–выход, не учитывающая конкретную физическую природу динамического процесса, которую принято называть черным ящиком. Методы статьи применимы для основных вариантов интегрально–функционального разложения Вольтерры, в том числе для случая стационарных динамических систем, векторного входного сигнала. Дан пример задачи оптимизации на основе рассматриваемых интегростепенных рядов. Отмечено, при анализе и оптимизации нелинейных динамических систем методом интегро–функциональных рядов может возникнуть проблема вычисления многомерных интегралов. Рассмотрено применение для задач анализа нелинейных динамических и стационарных систем комбинированного метода, основанного на интегростепенном ряде Вольтерры и сеточных методах решения соответствующих одно- и многомерных интегральных уравнений. Рассматривается случай, когда известен некоторый набор реализаций входного и выходного сигналов, которые могут быть в принципе случайными процессами. По этим данным осуществляется отыскание ядер в разложении на основе решения соответствующего линейного многомерного интегрального уравнения Фредгольма I рода. Соответствующая задача относится к некорректно поставленным и для ее решения применен метод регуляризации по А.Н. Тихонову. В статье предлагается применять в данной задаче в случае больших размерностей метод квази Монте–Карло, характерный удовлетворительной сходимостью. Исследованы вычислительные качества в рассматриваемой задаче полустатистического метода решения интегральных уравнений большой размерности, метод квази Монте-–Карло, метод центральных прямоугольников (ячеек) и квадратурные формулы Гаусса–Лежандра. Рассматриваемые подходы позволяют расширить круг решаемых задач теории анализа и оптимизации систем, поскольку предложены методы, практически приемлемые при больших размерностях интегральных уравнений в условиях ограниченной информации о системе.


Абас Висам Махди Абас, Арутюнян Р.В. Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Математическое моделирование и численные методы, 2021, № 2, с. 68–85.



621.464.3 Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока сторон

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Данилов Н. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-313


Для решения проектной задачи разработана математическая модель функционирования системы синхронизации исполнительных органов на основе дроссельного делителя потока. Приводится решение задачи оптимизации времени рассогласования относительного перемещения исполнительных органов при наличии внешних знакопеременных силовых воздействий, выполненное с помощью генетического алгоритма и уточненное с помощью метода Нелдера-Мида


Бушуев А.Ю., Данилов Н.А. Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока. Математическое моделирование и численные методы, 2022, № 2, с. 3–15



523.6+533.6 Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез

Андрущенко В. А. (Институт автоматизации проектирования РАН), Сызранова Н. Г. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2023-3-4261


В рамках актуальной проблемы кометно-астероидной опасности численно исследуются физические процессы, вызывающие разрушение и фрагментацию метеорных тел в атмосфере Земли, в данном случае Тунгусского болида. Число всевозможных версий и гипотез, связанных с Тунгусским явлением, чрезвычайно велико и продолжает возрастать, поэтому необходим анализ и обобщений всех известных фактов, присущих этому нестандартному катастрофическому событию, и только после этого приступить к выдвижению тех или иных гипотез, его объясняющих. На основе разработанной физико-математической модели, определяющей движение космических объектов естественного происхождения в атмосфере и их взаимодействия с ней, нами предложены две гипотезы, объясняющие процессы, происходящие при падении Тунгусского тела в 1908г. Первая гипотеза связана с дроблением тела, представляющего собой каменный метеороид, на большое количество фрагментов, которые разрушились в плотных слоях атмосферы под действием термических напряжений до размера мелкой пыли. Трудности выявления мелких частиц, выпавших именно в результате Тунгусского события, объясняются в основном следующим обстоятельством ˗ сроки начала первичных поисков следов падения тела были отдалены от момента события на целых двадцать лет, в течение которых на этой территории могло произойти весьма значительное количество других геофизических процессов. Вторая гипотеза связана с явлениями, возникающими при малых углах входа тела в атмосферу Земли. В этом случае происходит изменение баллистики его полета в атмосфере, заключающееся в переходе от режима падения к режиму подъема. Этот эффект приводит к реализации следующих возможных сценариев события: возврат тела обратно в космическое пространство при его остаточной скорости большей второй космической; переход тела на орбиту спутника Земли при остаточной скорости большей первой космической; при меньших значениях остаточной скорости тела возвращение его через некоторое время к режиму падения и достижение им земной поверхности на значительном расстоянии от предполагаемого места падения. Предложенные гипотезы объясняют, например, отсутствие материальных следов, в том числе и кратеров в ходе поисков останков Тунгусского болида в окрестности вывала леса


Андрущенко В.А., Сызранова Н.Г. Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез. Математическое моделирование и численные методы, 2023, № 3, с. 42–61.



519.6:629.7.02 Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Резников А. О. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-6273


Построена модель генетического алгоритма с бинарным кодированием с независимой селекцией Шеффера, позволяющая производить поиск глобального оптимума по нескольким критериям без их скаляризации. При расчетах учитывается область всех возможных перемещений исполнительных органов в условиях неопределённых внешних воздействий в некотором, заранее заданном, диапазоне. Разработан алгоритм, позволяющий хранить промежуточные результаты для устранения проблемы большого количества повторяющихся расчетов в ходе работы эволюционного алгоритма, что позволило снизить время вычислений. Эффективность работы оптимизационного алгоритма демонстрируется на примере решения модельной задачи.


Бушуев А.Ю., Резников А.О. Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов. Математическое моделирование и численные методы, 2021, № 3, с. 62–73.



1>>