Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.6 Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде

Хайиткулов Б. Х. (Национальный университет Узбекистана)


doi: 10.18698/2309-3684-2024-1-5566


Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие ― обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в прямоугольнике. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалась. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения ностационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением теплопроводности с постоянными коэффициентами, заданными для первой краевой задачи. Краевая задача изучается для двумерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


Хайиткулов Б. Х. Численное моделирование нестационарной задачи оптимального размещения источников тепла минимальной мощности в однородной среде. Математическое моделирование и численные методы, 2024, № 1, с. 55–66.



519.6 Численное решение уравнений смешанного типав неограниченной области на плоскости

Галанин М. П. (Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Ухова А. Р. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-105124


Целью является построение и реализация алгоритма нахождения численного решения задачи для уравнений смешанного типа в неограниченной области. Рассматриваются задачи, в которых исследуемый процесс описывается в некоторой ограниченной области уравнением теплопроводности или волновым, а вне нее — уравнением Лапласа. Поставлены необходимые дополнительные условия в нуле, на бесконечности и условия сопряжения на границе внутренней области. Описан алгоритм нахождения численного решения задачи с волновым уравнением в ограниченной области в одномерном и двумерном случаях, задач с уравнением теплопроводности или волновым в двумерном случае. Разностные схемы построены интегро–интерполяционным методом. Задача решается в ограниченной области. На ее границе поставлены нелокальные граничные условия так, что решение поставленной задачи в ограниченной области совпадает с проекцией на нее решения задачи в неограниченной области. При этом для решения введена искусственная граница в части области, в которой процесс описывается уравнением Лапласа. Построены итерационный алгоритм и алгоритм с нелокальным граничным условием. Представлены результаты вычислений для примеров в различных областях


Галанин М.П., Ухова А.Р. Численное решение уравнений смешанного типа в неограниченной области на плоскости. Математическое моделирование и численные методы, 2023, № 3, с. 105–124.



519.63 Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной

Перов Е. А. (Объединенный институт высоких температур РАН), Жаховский В. В. (Всероссийский научно-исследовательский институт автоматики им. Н.Л. Духова/Объединенный институт высоких температур РАН), Иногамов Н. А. (Институт теоретической физики им. Л.Д. Ландау РАН), Шепелев В. В. (Институт автоматизации проектирования РАН), Фортова С. В. (Институт автоматизации проектирования РАН), Долуденко А. Н. (Объединенный институт высоких температур РАН)


doi: 10.18698/2309-3684-2023-4-7492


Пластические деформации лежат в основе такой промышленной технологии, как лазерное термоупрочнение или лазерный пиннинг (LSP, laser shock peening). В данной работе методом классической молекулярной динамики исследована возможность упрочнения поверхностного слоя алюминиевого образца, облученного единичным фемтосекундным лазерным импульсом. Рассмотрены три ориентации кристаллической решетки — [1, 0, 0] (первая ориентация кристаллической решетки), [1, 1, 0] (вторая ориентация кристаллической решетки), [1, 1, 1] (третья ориентация кристаллической решетки). Проведено численное исследование влияния различных величин вложенной энергии в диапазоне от 120,98 Дж/м2 до 2540,01 Дж/м2 лазерного импульса на глубину залегания пластических деформаций, влияющих на упрочнение исследуемого материала. Построена зависимость максимальной глубины залегания пластических деформаций от вложенной энергии. Значения энергий подобранны таким образом, что пластический фронт УВ (ударной волны) останавливался до того, как достигнет правой границы моделируемого образца. Необходимость соблюдения этого условия обусловлена тем фактом, что отразившаяся от правой границы образца волна растяжения может тормозить пластический ударный фронт, выступая в роли волны разгрузки. С помощью построенной в работе зависимости максимальной глубины залегания пластических деформаций от вложенной энергии определено пороговое значение вложенной энергии, при превышении которого алюминий начинает пластически деформироваться.


Перов E.А., Жаховский В.В., Иногамов Н.А., Шепелев В.В., Фортова С.В., Долуденко А.Н.. Молекулярно-динамическое моделирование модификации алюминия лазерной ударной волной. Математическое моделирование и численные методы, 2023, № 4, с. 74-92



517 Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул

Висам Махди Абас А. (ЮРГПУ (НПИ)), Арутюнян Р. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-6885


Рассматриваются вопросы анализа нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Используется математическая модель типа вход–выход, не учитывающая конкретную физическую природу динамического процесса, которую принято называть черным ящиком. Методы статьи применимы для основных вариантов интегрально–функционального разложения Вольтерры, в том числе для случая стационарных динамических систем, векторного входного сигнала. Дан пример задачи оптимизации на основе рассматриваемых интегростепенных рядов. Отмечено, при анализе и оптимизации нелинейных динамических систем методом интегро–функциональных рядов может возникнуть проблема вычисления многомерных интегралов. Рассмотрено применение для задач анализа нелинейных динамических и стационарных систем комбинированного метода, основанного на интегростепенном ряде Вольтерры и сеточных методах решения соответствующих одно- и многомерных интегральных уравнений. Рассматривается случай, когда известен некоторый набор реализаций входного и выходного сигналов, которые могут быть в принципе случайными процессами. По этим данным осуществляется отыскание ядер в разложении на основе решения соответствующего линейного многомерного интегрального уравнения Фредгольма I рода. Соответствующая задача относится к некорректно поставленным и для ее решения применен метод регуляризации по А.Н. Тихонову. В статье предлагается применять в данной задаче в случае больших размерностей метод квази Монте–Карло, характерный удовлетворительной сходимостью. Исследованы вычислительные качества в рассматриваемой задаче полустатистического метода решения интегральных уравнений большой размерности, метод квази Монте-–Карло, метод центральных прямоугольников (ячеек) и квадратурные формулы Гаусса–Лежандра. Рассматриваемые подходы позволяют расширить круг решаемых задач теории анализа и оптимизации систем, поскольку предложены методы, практически приемлемые при больших размерностях интегральных уравнений в условиях ограниченной информации о системе.


Абас Висам Махди Абас, Арутюнян Р.В. Моделирование нелинейных динамических и стационарных систем на основе интегро–функциональных рядов Вольтерры и различных классов квадратурных формул. Математическое моделирование и численные методы, 2021, № 2, с. 68–85.



519.2.214 Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывно-дискретной фильтрации случайных процессов в реальном времени

Валишин А. А. (МГТУ им.Н.Э.Баумана), Запривода А. В. (МГТУ им.Н.Э.Баумана), Клонов А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-93109


При развитии методов прогнозирования существенное значение приобретает исключение из исходной информации и исследуемых процессов случайных эффектов. Эти эффекты связаны не только с невозможностью учета всех факторов, но и с тем, что часть из них нередко совсем не принимаются во внимание. Не стоит забывать и про случайные погрешности измерений. В прогнозируемых величинах вследствие указанных эффектов создается некий случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, повысить достоверность и оправдываемость прогнозов. В статье рассмотрены принципы фильтрации данных в масштабе реального времени. Приводится постановка задачи, а также основные критерии оценок, которые должны выполняться для получения удовлетворительного результата. Разбирается принцип работы двух наиболее распространённых видов фильтров – абсолютно оптимальных и условно оптимальных, описываются их достоинства и недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с двумя датчиками. Представлены некоторые выводы и рекомендации о том, в каких случаях лучше использовать тот или иной фильтр.


Валишин А.А., Запривода А.В., Клонов А.С. Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывнодискретной фильтрации случайных процессов в реальном времени. Математическое моделирование и численные методы, 2024, № 1, с. 93–109.



519.87 Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции

Бобров В. А. (МПГУ), Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-4-12134


В среде клеточных автоматов рассматривается дискретный аналог классической модели конкуренции А. Лотки – В. Вольтерры. Известно, что в классической модели тип ее эволюции во времени определяется в первую очередь принадлежностью коэффициентов двойных стандартов тем или иным диапазонам их возможных значений. Показано, что такая же ситуация имеет место и для дискретной модели. Для классической модели имеет место эффект мягкой силы. При рассмотрении модели применительно к социальным системам, она превращается в кооперативную позиционную дифференциальную игру, ограничениями которой становится исходная система уравнений конкуренции А. Лотки – В. Вольтерры, а управлениями — коэффициенты двойных стандартов. Эффект мягкой силы состоит в том, что стороны склонны сравнивать конкурентное давление на них популяции соперника с конкурентным давлением внутри собственной популяции и могут принять меньшее давление соперника за благосклонное его к ним отношение, а большее — за враждебное проявление. Тогда как на самом деле — сравнение внешнего конкурентного давления с внутренним в данной игре не информативно — все зависит исключительно от коэффициентов двойных стандартов, которые в этой игре являются управлениями и поэтому не известны сопернику. Имитационные эксперименты с аналогом модели конкуренции, реализованным в среде клеточных автоматов, показывают, что в дискретной модели эффект мягкой силы также имеет место


Бобров В.А., Бродский Ю.И. Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции. Математическое моделирование и численные методы, 2021, № 4, с. 121–134.



621.464.3 Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока сторон

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Данилов Н. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-313


Для решения проектной задачи разработана математическая модель функционирования системы синхронизации исполнительных органов на основе дроссельного делителя потока. Приводится решение задачи оптимизации времени рассогласования относительного перемещения исполнительных органов при наличии внешних знакопеременных силовых воздействий, выполненное с помощью генетического алгоритма и уточненное с помощью метода Нелдера-Мида


Бушуев А.Ю., Данилов Н.А. Математическое моделирование гидравлической системы синхронизации исполнительных органов на основе дроссельного делителя потока. Математическое моделирование и численные методы, 2022, № 2, с. 3–15



519.8 «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-102113


С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.


Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115



519.6 Агентная модель двух конкурирующих популяций с учетом структурности

Белотелов Н. В. (Вычислительный центр им. А.А. Дородницына ФИЦ ИУ РАН/МГТУ им.Н.Э.Баумана), Бровко А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-3-7183


В статье описывается агентная имитационная модель двух популяций, конкурирующих за один ресурс. В модели считается, что особь погибает, если её масса-энергия становится неположительной. Предполагается, что особи каждой из рассматриваемых популяций могут образовывать стаи, это позволяет популяциям повышать свою конкурентоспособность. В модели это формализуется посредством возможности организовывать сети, связывающие особей одного вида. При этом особи могут образовывать лишь определенное количество связей с соседями. В модели для описания этого вводится понятие «валентности». Предполагается, что внутри каждой сети происходит мгновенное перераспределение ресурса по всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели описана структура программы, с помощью которой проводились имитационные эксперименты. В результате проведенных имитационных экспериментов было получено следующее. Если ресурс высокопродуктивный, то в процессе конкурентного взаимодействия побеждает популяция, агенты, которой имеют большую «валентность». А в случае низко продуктивного ресурса победу в конкурентном взаимодействии одерживают особи популяции, обладающей меньшей «валентностью». Это связано с тем, что более сложные структуры требуют большей энергии поддержания стаи.


Белотелов Н.В., Бровко А.В. Агентная модель двух конкурирующих популяций с учетом их структурности. Математическое моделирование и численные методы, 2022, № 3, с. 71–83.



1>>