Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"
doi: 10.18698/2309-3684-2022-4-6380
В работе рассмотрено моделирование циклических процессов реального макромира набором двух (или большего числа) систем линейных разностных уравнений с постоянными коэффициентами. Показано, что из любого начального состояния система может быть переведена в заданное конечное состояние за заданное число шагов и, как следствие — получены условия существования циклического решения на плоскости или в пространстве любой размерности. Для циклического решения интегральные кривые систем состыковываются по непрерывности. Переключение с одной системы уравнений на другую происходит при достижении интегральными кривыми границ на фазовой плоскости (пространстве). Проведен анализ скорости сходимости таких решений к устойчивому циклу. Показана существенная зависимость хода интегральных кривых (траекторий) от начальных условий. Модель в виде авторегрессий связана с экспериментальными данными — временными рядами и аппроксимирует их по критерию минимизации среднеквадратичного отклонения. Предложенные модели могут также применяться к задачам достижения заданных значений процессов (технических, экономических) в заданный момент врем
Смирнов В.Ю., Кузнецова А.В. О моделировании циклических процессов решениями кусочно-линейных разностных уравнений с постоянными коэффициентами по экспериментальным данным в виде временных рядов. Математическое моделирование и численные методы, 2022, № 4, с. 63–80.
doi: 10.18698/2309-3684-2023-1-3242
Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие — обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в параллелепипеде. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалось. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением конвекции-диффузии, заданным для первой краевой задачи. Краевая задача изучается для трёхмерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.
Хайиткулов Б.Х. Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла. Математическое моделирование и численные методы, 2023, No 1, с. 32–42.
539.3 Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций
doi: 10.18698/2309-3684-2024-1-3854
Рассматривается задача моделирования потери устойчивости конструкций из композиционных материалов вследствие нестационарных тепловых воздействий на них, с учетом температурной зависимости свойств компонентов композита. Сформулированы системы уравнений для расчета основного и варьированного состояний конструкции. Предложена классификация задач устойчивости. Описано применение метода конечных элементов для определения критической температуры и отвечающей ей формы потери устойчивости конструкции. Сформулирована локальная обобщенная задача на собственные значения и произведена верификация предложенной модели с помощью программного комплекса SMCM, разработанного в НОЦ «Симплекс» МГТУ им. Н.Э. Баумана, а также с помощью ПК ANSYS. Показано, что результаты расчета собственных форм и собственных значений в тестовой задаче достаточно хорошо совпадают.
Димитриенко Ю.И., Богданов И.О., Юрин Ю.В., Маремшаова А.А., Анохин Д. Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций. Математическое моделирование и численные методы, 2024, № 1, с. 38–54.
519.6 Агентная модель двух конкурирующих популяций с учетом структурности
doi: 10.18698/2309-3684-2022-3-7183
В статье описывается агентная имитационная модель двух популяций, конкурирующих за один ресурс. В модели считается, что особь погибает, если её масса-энергия становится неположительной. Предполагается, что особи каждой из рассматриваемых популяций могут образовывать стаи, это позволяет популяциям повышать свою конкурентоспособность. В модели это формализуется посредством возможности организовывать сети, связывающие особей одного вида. При этом особи могут образовывать лишь определенное количество связей с соседями. В модели для описания этого вводится понятие «валентности». Предполагается, что внутри каждой сети происходит мгновенное перераспределение ресурса по всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели описана структура программы, с помощью которой проводились имитационные эксперименты. В результате проведенных имитационных экспериментов было получено следующее. Если ресурс высокопродуктивный, то в процессе конкурентного взаимодействия побеждает популяция, агенты, которой имеют большую «валентность». А в случае низко продуктивного ресурса победу в конкурентном взаимодействии одерживают особи популяции, обладающей меньшей «валентностью». Это связано с тем, что более сложные структуры требуют большей энергии поддержания стаи.
Белотелов Н.В., Бровко А.В. Агентная модель двух конкурирующих популяций с учетом их структурности. Математическое моделирование и численные методы, 2022, № 3, с. 71–83.
519.6 Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах
doi: 10.18698/2309-3684-2021-3-105119
Необходимость разработки формализованных компьютерно-ориентированных подходов к проведению междисциплинарных исследований межкультурных взаимодействий является актуальной задачей. В статье описывается подход к разработке агентных моделей межкультурных взаимодействий, основанный на использовании неметризуемых хаусдорфовых пространств с использованием генетических алгоритмов для введения динамических изменений в рассматриваемой структуре культурных агентов. В статье рассматривается прототип агентной модели, в которой состояние агентов описывается в хаусдорфовых пространствах. С помощью выбора опорных точек для каждого агента строится функция Урысона, которая позволяет вводить предпочтения агентов. Далее с помощью технологии генетических алгоритмов, удается получить тактовую динамику изменения всей системы агентов. В статье приводится описание некоторых имитационных экспериментов. Обсуждаются возможные перспективы развития данного подхода.
Белотелов Н.В, Павлов С.А. Агентная модель культурных взаимодействий на неметризуемых хаусдорфовых пространствах. Математическое моделирование и численные методы, 2021, № 3, с. 105–119.
521.19 Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе
doi: 10.18698/2309-3684-2023-4-6473
Одним из видов гравитационного рассеяния в Солнечной системе в рамках модели круговой ограниченной задачи трех тел (CR3BP) являются гравитационные маневры «частиц незначительной массы» (космические аппараты, астероиды, кометы и др.). Для их описания полезна физическая аналогия с рассеянием пучков заряженных альфа-частиц в кулоновском поле. Однако, в отличие от рассеяния заряженных частиц, существуют внешние ограничения на возможность выполнения гравитационных маневров, связанные с ограниченным размером сферы влияния планеты. В то же время из литературы по CR3BP известны внутренние ограничения на возможность исполнения гравитационных маневров, оцениваемые эффективными радиусами планет (включая гравитационный захват планетой, попадающей в нее). Они зависят от асимптотической скорости частицы относительно планеты. По понятным причинам их влияние лишает возможности эффективного использования гравитационных маневров. В работе представлены обобщенные оценки размеров околопланетных областей (плоских вращающихся синхронно с малым телом «пертурбационных колец» или «пертурбационных оболочек» в трехмерном случае), попадание в которые является необходимым условием реализации гравитационных маневров. Детальный анализ показывает, что Нептун и Сатурн имеют характерные оболочки — полые сферы возмущений самых больших размеров в Солнечной системе, а Юпитер занимает в этом списке лишь четвертое место.
Боровин Г.К., Голубев Ю.Ф., Грушевский А.В., Тучин А.Г. Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе.Математическое моделирование и численные методы, 2023, № 4, с. 64–73.
doi: 10.18698/2309-3684-2021-2-3853
Целью данной работы является построение глобальной модели цикла углерода. Модель описывает продукционный процесс лесных экосистем с учетом сезонного хода климатических факторов. Она предназначена для моделирования длительного периода времени в составе глобальной климатической модели промежуточной сложности. Установлено, что глобальные характеристики климатической системы выходят на установившейся режим за время около 2000 лет и модель устойчиво работает. Приведены временные и пространственные распределения полученных климатических характеристик и биогеохимического углеродного цикла наземной растительности.
Пархоменко В.П. Глобальная климатическая модель с учетом биогеохимического углеродного цикла растительности суши. Математическое моделирование и численные методы, 2021, № 2, с. 38–53.
doi: 10.18698/2309-3684-2024-2-316
В исследовании рассмотрена проблема оптимизации системы обнаружения трещин лопаток газовых турбин. В качестве объекта исследования рассмотрена оболочка капсулы системы обнаружения повреждений, находящаяся в контакте с телом лопатки и под действием внутреннего давления. Задача исследования была посвящена вопросу математического моделирования оптимального давления в капсулах системы обнаружения повреждений. В рамках решения проблемы исследования проведена математическая постановка задачи оптимизации нелинейной функции давления при наличии ограничений на варьируемые параметры: толщину стенки и наружный диаметр цилиндрической оболочки капсулы. Построение целевой функции оптимизации проводилось на основании условия равновесия элемента оболочки в области раскрытия трещины турбинной лопатки, критерия предельного состояния с использованием теории прочности Треска-Сен-Венана. Методика исследования строилась с использованием приближенного разложения функции напряжений в ряд Тейлора, применением метода множителей Лагранжа, теоремы Куна-Таккера. При решении задачи условной оптимизации проанализированы случаи нарушения условий регулярности ограничивающих функций. По результатам расчета минимальное значение требуемого давления для разрушения оболочки капсулы в случае раскрытия берегов трещины турбинной лопатки достигается при максимальном значении наружного диаметра оболочки и минимальной толщине ее стенки. По данным тестового расчета графически представлена область допустимых решений оптимизационной задачи, и показаны линии уровня целевой функции оптимизации давления. Построенная математическая модель и алгоритм позволят автоматизировать процесс расчета требуемого давления в капсулах системы обнаружения трещин лопаток турбин и получить оценку минимального значения давления при наличии ограничений на толщину стенки и наружный диаметр оболочки капсулы.
Андрианов И.К., Чепурнова Е.К. Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин. Математическое моделирование и численные методы, 2024, № 2, с. 3–16.
doi: 10.18698/2309-3684-2024-1-1837
На основе данных высокочастотных циклических испытаний корсетных образцов из алюминиевого сплава Д16Т и SLM сплава AlSi10Mg на современных пьезоэлектрических установках выполнен сравнительный анализ усталостной прочности горячекатаного и SLM материалов. Показана относительно низкая циклическая прочность SLM материалов, связанная с их сложной микроструктурой, на которую влияют стратегия лазерного сканирования, параметры лазерного луча, энергия, теплоотдача из зоны плавки, параметры среды в камере. С использованием мультирежимной модели циклической повреждаемости и численного метода расчета кинетики повреждаемости при высокочастотном циклическом нагружении проведено математическое моделирование процесса усталостного разрушения указанных образцов для различных амплитуд и средних напряжений в цикле. Предложенная модель и метод расчета позволяют быстро и эффективно строить усталостные кривые для различных режимов циклического нагружения и коэффициентов асимметрии цикла. Для этого достаточно знать базовые точки бимодальной усталостной кривой для реверсивного цикла.
Никитин А.Д., Стратула Б.А. Моделирование циклической повреждаемости и усталостной прочности при высокочастотном нагружении 3Д-напечатанных образцов из алюминиевого сплава. Математическое моделирование и численные методы, 2024, № 1, с. 18–37.