Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.6 Численное решение уравнений смешанного типав неограниченной области на плоскости

Галанин М. П. (Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Ухова А. Р. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-105124


Целью является построение и реализация алгоритма нахождения численного решения задачи для уравнений смешанного типа в неограниченной области. Рассматриваются задачи, в которых исследуемый процесс описывается в некоторой ограниченной области уравнением теплопроводности или волновым, а вне нее — уравнением Лапласа. Поставлены необходимые дополнительные условия в нуле, на бесконечности и условия сопряжения на границе внутренней области. Описан алгоритм нахождения численного решения задачи с волновым уравнением в ограниченной области в одномерном и двумерном случаях, задач с уравнением теплопроводности или волновым в двумерном случае. Разностные схемы построены интегро–интерполяционным методом. Задача решается в ограниченной области. На ее границе поставлены нелокальные граничные условия так, что решение поставленной задачи в ограниченной области совпадает с проекцией на нее решения задачи в неограниченной области. При этом для решения введена искусственная граница в части области, в которой процесс описывается уравнением Лапласа. Построены итерационный алгоритм и алгоритм с нелокальным граничным условием. Представлены результаты вычислений для примеров в различных областях


Галанин М.П., Ухова А.Р. Численное решение уравнений смешанного типа в неограниченной области на плоскости. Математическое моделирование и численные методы, 2023, № 3, с. 105–124.



519.17 Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания

Бодряков В. Ю. (Уральский государственный педагогический университет)


doi: 10.18698/2309-3684-2024-2-6884


В статье впервые получено аналитическое решение задачи о преследовании в системе «хищник–жертва» в евклидовом 3D-пространстве для произвольных начальных углов прицеливания. В процессе преследования жертва движется равномерно и прямолинейно, постоянный по модулю вектор скорости хищника нацелен на жертву. Точное решение задачи получено в форме параметрически заданной пространственной кривой преследования. Получены точные выражения для других существенных характеристик процесса преследования (времени преследования, координат жертвы, длины кривой преследования, и др.). Проведено реалистичное компьютерное моделирование взаимного движения хищника и жертвы в пространстве и во времени; определены характерные параметры процесса преследования. Отмечен значительный дидактический потенциал решенной задачи о 3D-преследовании для подготовки будущих специалистов в области механики и управления; задача может служить содержательной основой для выполнения обучающимися исследовательских проектов, курсовых и выпускных квалификационных работ.


Бодряков В.Ю. Задача о преследовании в 3D-пространстве с произвольными начальными углами прицеливания. Математическое моделирование и численные методы, 2024, № 2, с. 68-84.



539.3 Моделирование циклической повреждаемости и усталостной прочности при высокочастотном нагружении 3Д-напечатанных образцов из алюминиевого сплава

Никитин А. Д. (Институт автоматизации проектирования РАН), Стратула Б. А. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2024-1-1837


На основе данных высокочастотных циклических испытаний корсетных образцов из алюминиевого сплава Д16Т и SLM сплава AlSi10Mg на современных пьезоэлектрических установках выполнен сравнительный анализ усталостной прочности горячекатаного и SLM материалов. Показана относительно низкая циклическая прочность SLM материалов, связанная с их сложной микроструктурой, на которую влияют стратегия лазерного сканирования, параметры лазерного луча, энергия, теплоотдача из зоны плавки, параметры среды в камере. С использованием мультирежимной модели циклической повреждаемости и численного метода расчета кинетики повреждаемости при высокочастотном циклическом нагружении проведено математическое моделирование процесса усталостного разрушения указанных образцов для различных амплитуд и средних напряжений в цикле. Предложенная модель и метод расчета позволяют быстро и эффективно строить усталостные кривые для различных режимов циклического нагружения и коэффициентов асимметрии цикла. Для этого достаточно знать базовые точки бимодальной усталостной кривой для реверсивного цикла.


Никитин А.Д., Стратула Б.А. Моделирование циклической повреждаемости и усталостной прочности при высокочастотном нагружении 3Д-напечатанных образцов из алюминиевого сплава. Математическое моделирование и численные методы, 2024, № 1, с. 18–37.



519.8 «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-102113


С использованием метода динамики средних разработана «смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей нанесения воздействий единицами сторон. Построен алгоритм, позволяющий исследовать ход протекания процесса и вычислить его основные показатели. Установлено, что использование моделей с постоянными эффективными скоростями нанесения воздействий во многих случаях приводит к значительным ошибкам при вычислении основных показателей процесса. Исследовано влияние упреждающего воздействия одной из противоборствующих сторон на ход его протекания и окончательный итог.


Чуев В.Ю., Дубограй И.В. «Смешанная» модель противоборства многочисленных группировок при линейных зависимостях от времени эффективных скоростей воздействий единицами сторон. Математическое моделирование и численные методы, 2022, № 2, с. 104–115



519.87 Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции

Бобров В. А. (МПГУ), Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-4-12134


В среде клеточных автоматов рассматривается дискретный аналог классической модели конкуренции А. Лотки – В. Вольтерры. Известно, что в классической модели тип ее эволюции во времени определяется в первую очередь принадлежностью коэффициентов двойных стандартов тем или иным диапазонам их возможных значений. Показано, что такая же ситуация имеет место и для дискретной модели. Для классической модели имеет место эффект мягкой силы. При рассмотрении модели применительно к социальным системам, она превращается в кооперативную позиционную дифференциальную игру, ограничениями которой становится исходная система уравнений конкуренции А. Лотки – В. Вольтерры, а управлениями — коэффициенты двойных стандартов. Эффект мягкой силы состоит в том, что стороны склонны сравнивать конкурентное давление на них популяции соперника с конкурентным давлением внутри собственной популяции и могут принять меньшее давление соперника за благосклонное его к ним отношение, а большее — за враждебное проявление. Тогда как на самом деле — сравнение внешнего конкурентного давления с внутренним в данной игре не информативно — все зависит исключительно от коэффициентов двойных стандартов, которые в этой игре являются управлениями и поэтому не известны сопернику. Имитационные эксперименты с аналогом модели конкуренции, реализованным в среде клеточных автоматов, показывают, что в дискретной модели эффект мягкой силы также имеет место


Бобров В.А., Бродский Ю.И. Моделирование клеточными автоматами эффектов двойных стандартов и мягкой силы при конкуренции. Математическое моделирование и численные методы, 2021, № 4, с. 121–134.



519.6, 621.4 Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин

Андрианов И. К. (Комсомольский-на-Амуре государственный технический университет), Чепурнова Е. К. (Комсомольский-на-Амуре государственный технический университет)


doi: 10.18698/2309-3684-2024-2-316


В исследовании рассмотрена проблема оптимизации системы обнаружения трещин лопаток газовых турбин. В качестве объекта исследования рассмотрена оболочка капсулы системы обнаружения повреждений, находящаяся в контакте с телом лопатки и под действием внутреннего давления. Задача исследования была посвящена вопросу математического моделирования оптимального давления в капсулах системы обнаружения повреждений. В рамках решения проблемы исследования проведена математическая постановка задачи оптимизации нелинейной функции давления при наличии ограничений на варьируемые параметры: толщину стенки и наружный диаметр цилиндрической оболочки капсулы. Построение целевой функции оптимизации проводилось на основании условия равновесия элемента оболочки в области раскрытия трещины турбинной лопатки, критерия предельного состояния с использованием теории прочности Треска-Сен-Венана. Методика исследования строилась с использованием приближенного разложения функции напряжений в ряд Тейлора, применением метода множителей Лагранжа, теоремы Куна-Таккера. При решении задачи условной оптимизации проанализированы случаи нарушения условий регулярности ограничивающих функций. По результатам расчета минимальное значение требуемого давления для разрушения оболочки капсулы в случае раскрытия берегов трещины турбинной лопатки достигается при максимальном значении наружного диаметра оболочки и минимальной толщине ее стенки. По данным тестового расчета графически представлена область допустимых решений оптимизационной задачи, и показаны линии уровня целевой функции оптимизации давления. Построенная математическая модель и алгоритм позволят автоматизировать процесс расчета требуемого давления в капсулах системы обнаружения трещин лопаток турбин и получить оценку минимального значения давления при наличии ограничений на толщину стенки и наружный диаметр оболочки капсулы.


Андрианов И.К., Чепурнова Е.К. Математическая модель условной оптимизации давления в системе обнаружения трещин лопаток газовых турбин. Математическое моделирование и численные методы, 2024, № 2, с. 3–16.



523.6+533.6 Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез

Андрущенко В. А. (Институт автоматизации проектирования РАН), Сызранова Н. Г. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2023-3-4261


В рамках актуальной проблемы кометно-астероидной опасности численно исследуются физические процессы, вызывающие разрушение и фрагментацию метеорных тел в атмосфере Земли, в данном случае Тунгусского болида. Число всевозможных версий и гипотез, связанных с Тунгусским явлением, чрезвычайно велико и продолжает возрастать, поэтому необходим анализ и обобщений всех известных фактов, присущих этому нестандартному катастрофическому событию, и только после этого приступить к выдвижению тех или иных гипотез, его объясняющих. На основе разработанной физико-математической модели, определяющей движение космических объектов естественного происхождения в атмосфере и их взаимодействия с ней, нами предложены две гипотезы, объясняющие процессы, происходящие при падении Тунгусского тела в 1908г. Первая гипотеза связана с дроблением тела, представляющего собой каменный метеороид, на большое количество фрагментов, которые разрушились в плотных слоях атмосферы под действием термических напряжений до размера мелкой пыли. Трудности выявления мелких частиц, выпавших именно в результате Тунгусского события, объясняются в основном следующим обстоятельством ˗ сроки начала первичных поисков следов падения тела были отдалены от момента события на целых двадцать лет, в течение которых на этой территории могло произойти весьма значительное количество других геофизических процессов. Вторая гипотеза связана с явлениями, возникающими при малых углах входа тела в атмосферу Земли. В этом случае происходит изменение баллистики его полета в атмосфере, заключающееся в переходе от режима падения к режиму подъема. Этот эффект приводит к реализации следующих возможных сценариев события: возврат тела обратно в космическое пространство при его остаточной скорости большей второй космической; переход тела на орбиту спутника Земли при остаточной скорости большей первой космической; при меньших значениях остаточной скорости тела возвращение его через некоторое время к режиму падения и достижение им земной поверхности на значительном расстоянии от предполагаемого места падения. Предложенные гипотезы объясняют, например, отсутствие материальных следов, в том числе и кратеров в ходе поисков останков Тунгусского болида в окрестности вывала леса


Андрущенко В.А., Сызранова Н.Г. Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез. Математическое моделирование и численные методы, 2023, № 3, с. 42–61.



621.822.2, 519.63 Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения

Соколов Н. В. (АО НИИтурбокомпрессор им. В.Б. Шнеппа/Казанский национальный исследовательский технологический университет), Хадиев М. Б. (Казанский национальный исследовательский технологический университет), Федотов П. Е. (Казанский (Приволжский) федеральный университет/ООО «АСТ Поволжье»), Федотов Е. М. (ООО «АСТ Поволжье»)


doi: 10.18698/2309-3684-2023-1-92111


Представлены исследования влияния класса вязкости подаваемого масла ISO VG32 и ISO VG46 в широком диапазоне скоростей ротора и рабочих зазорах на локальные и интегральные характеристики упорного подшипника скольжения с неподвижными подушками компрессора. Исследования проведены с помощью программы расчетов Sm2Px3Txτ на основе результатов численных экспериментов подшипника. Программа построена численной реализацией нестационарной периодической термоупругогидродинамической (ПТУГД) математической модели работы упорного подшипника. Результаты исследований указывают на существенное влияние класса вязкости масла на основные характеристики и температурный режим работы упорного подшипника. При замене масла ISO VG46 на более жидкое ISO VG32 происходит заметное снижение температур подушек подшипника и потерь мощности. Однако уровень этого изменения определяется задаваемым рабочим зазором между вращающимся упорным диском и подушками подшипника. Проанализировано влияние класса вязкости масла и профиля рабочей поверхности на температурный режим работы подушки. Определяются величина и расположение максимальной температуры подушки упорного подшипника, а также возможность применения на практике эталонной точки 75/75 из API-670.


Соколов Н.В., Хадиев М.Б., Федотов П.Е., Федотов Е.М. Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения. Математическое моделирование и численные методы, 2023, No 1, с. 92–111.



519.6 Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Рахманкулов Д. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-7487


В данной работе рассматривается оптимизация перелета спутника малой массы с орбиты Земли на орбиту Марса под солнечным парусом. Оптимизация управления углом установки солнечного паруса проводится с использованием принципа максимума Понтрягина при минимизации времени перелета. В отличие от предшествующих работ на эту тему решение краевой задачи, к решению которой сводится принцип максимума, получено методом пристрелки. Программа расчета написана на языке программирования С++. Несмотря на вычислительные сложности, возникающие при использовании метода пристрелки, удалось добиться хорошей сходимости метода Ньютона, лежащего в основе алгоритма. Проведен анализ точности полученных результатов и показана возможность применения метода пристрелки при решении подобных задач. Проведено сравнение с данными ранее опубликованных работ. Несмотря на некоторые допущения, использованные при разработке алгоритма расчета, работа имеет свою ценность в плане оценки возможности использования метода пристрелки, дающего наиболее точные численные результаты оптимизации.


Мозжорина Т.Ю., Рахманкулов Д.А. Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом. Математическое моделирование и численные методы, 2021, № 3, с. 74–87.



1>>