• 539.26 Анализ эмпирических моделей кривых деформирования упругопластических материалов (обзор). Часть 3

    Головина Н. Я. (Тюменский индустриальный университет)


    doi: 10.18698/2309-3684-2023-1-331


    Статья является третьей частью обзора работ, посвященных исследованиям свойств упругопластических материалов. Первая и вторая часть были посвящены анализу универсальных эмпирических законов деформирования, моделирующих свойства материала на всем диапазоне деформирования, вплоть до разрушения. Был сделан вывод о том, что для создания модели отклика материала на рост напряжений, закон деформирования должен быть, как минимум четырех-параметрическим. Эмпирический закон Рамберга-Осгуда был признан наиболее качественным, по крайней мере для рассмотренного титанового сплава ВТ6. Тем не менее, несмотря на его точность, он не отражает свойств материала в зоне больших пластических деформаций, в том числе в окрестности точки предела прочности. В данной статье представлен анализ многозвенных моделей, описывающих связь между деформацией и напряжением, различными законами в зоне упругих и в зоне пластических деформаций. В обзор вошли: двузвенные модели Надаи (Nadai), Мирамбелл-Реал (Mirambell, Real), Расмуссена (Rasmussen), Абделла (Abdella), сформулированные для материалов, кривая деформирования, которых не имеет участка с положительной кривизной. Также в обзоре рассмотрены трехзвенные модели Куача (Quach); Хертеле (Hertele); Белова-Головиной, которые позволяют моделировать кривые деформирования с участком положительной кривизны. Оценка качества эмпирических законов и соответствие их выборке экспериментальных точек осуществлена методом минимизации суммарного квадратичного отклонения и использованием метода градиентного спуска для определения минимума функции многих переменных. В качестве материала для сравнительного анализа эмпирических моделей выбран титановый сплав ВТ6, для моделей Хертеле и Белова-Головиной — сталь Ст3сп. Показано, что модели, построенные на основе многозвенных сплайнов, боле точно определяют свойства упругопластических материалов, чем модели, построенные на основе универсальных законов.


    Головина Н.Я. Анализ эмпирических моделей кривых деформирования упруго-пластических материалов (обзор). Часть 3. Математическое моделирование и численные методы, 2023, No 1, с. 3–31.





  • 519.6 Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла

    Хайиткулов Б. Х. (Национальный университет Узбекистана)


    doi: 10.18698/2309-3684-2023-1-3242


    Данная работа посвящена численному решению нестационарной задачи оптимального размещения источников тепла минимальной мощности. Постановка задачи требует одновременного выполнения двух условий. Первое условие — обеспечить нахождение температуры в пределе минимальных и максимальных температур за счет оптимального размещения источников тепла с минимальной мощностью в параллелепипеде. Второе условие заключается в том, чтобы суммарная мощность источников тепла, используемых для обогрева, была минимальной. Эта задача изучалась в стационарных условиях в работах других учёных. Однако в нестационарном случае задача не рассматривалось. Поскольку найти непрерывное решение краевой задачи сложно, то ищем численное решение задачи. Трудно найти интегральный оператор с непрерывным ядром (функция Грина). Найдено численное значение функции Грина в виде матрицы. Предложен новый алгоритм численного решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью в процессах, описываемых дифференциальными уравнениями с частными производными параболического типа. Предложена новая методика численного решения. Построена математическая и численная модель процессов, описываемых уравнением конвекции-диффузии, заданным для первой краевой задачи. Краевая задача изучается для трёхмерного случая. Для численного решения задачи использовалась неявная конечно-разностная схема. По этой схеме была создана система разностных уравнений. Сформированная система разностных уравнений приведена к задаче линейного программирования. Задача линейного программирования решается с помощью М-метода. При каждом значении времени решается задача линейного программирования. Предложен новый подход к численному решению задач. Приведена общая блок-схема алгоритма решения нестационарной задачи оптимального управления размещением источников тепла с минимальной мощностью. Разработан алгоритм и программное обеспечение для численного решения задачи. Приведено краткое описание программного обеспечения. На конкретных примерах показано, что численное решение краевой задачи находится в заданных пределах, сумма оптимально размещенных источников тепла с минимальной мощностью дает минимум функционалу. Визуализированы результаты вычислительного эксперимента.


    Хайиткулов Б.Х. Математическое моделирование нестационарной задачи конвекции–диффузии об оптимальном выборе местоположения источников тепла. Математическое моделирование и численные методы, 2023, No 1, с. 32–42.





  • 539.3 Конечно-элементное моделирование температурных полей в тонкостенных многослойных анизотропных оболочках

    Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Коряков М. Н. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана)


    doi: 10.18698/2309-3684-2023-1-4363


    Рассмотрена проблема разработки модели для расчета температурных полей в тонкостенных многослойных криволинейно-анизотропных тонких оболочках произвольной геометрической формы, в том числе составных. Как правило для решения этой задачи используется конкретная координатная запись уравнений теории теплопроводности, что создает определенные трудности для расчета сложных составных оболочек. В данной работе предложено использовать инвариантную запись вариационной постановки задач теории теплопроводности, с последующим применением процедуры конечно-элементного алгоритма. В результаты выведены матричное дифференциальное уравнение для определения температурного поля в узлах конечно-элементной сетки. Разработан программный модуль для конечно-элементного решения задачи нестационарной теплопроводности оболочек. Модуль функционирует в составе программного комплекса SMCM, созданного в Научно-образовательном центре «Суперкомпьютерного инженерного моделирования и разработки программных комплексов» МГТУ им. Н.Э. Баумана (НОЦ «СИМПЛЕКС»). Приведен пример решения задачи расчета нестационарного температурного поля в цилиндрической оболочке с продольно-поперечным подкреплением. Проведено сравнение численного моделирования с аналогичными расчетами в ПК ANSYS, которое показало высокую точность предложенного метода: относительно отклонение результатов не превышает 0,5 %.


    Димитриенко Ю.И., Юрин Ю.В., Коряков М.Н., Маремшаова А.В. Конечно-элементное моделирование температурных полей в тонкостенных многослойных оболочечных элементах конструкций. Математическое моделирование и численные методы, 2023, No 1, с. 43–63





  • 624.04 Новый метод вычисления жесткости на кручение в модели естественно-закрученного стержня

    Темис Ю. М. (Центральный институт авиационного моторостроения им. П.И. Баранова), Зиятдинов И. З. (Центральный институт авиационного моторостроения им. П.И. Баранова)


    doi: 10.18698/2309-3684-2023-1-6480


    На начальных этапах проектирования лопаток компрессоров, винтов, режущих инструментов целесообразно применение конечно-элементной модели, основанной на модели естественно закрученного стержня. Эта модель позволяет учесть влияние угла естественной закрутки на жесткость детали. Жесткость на кручение стержня существенно влияет на параметры жесткости конечно-элементной модели. Показано, что поправка жёсткости на кручение, полученная на основе соотношений технической теории естественно закрученных стержней, позволяет при небольших углах естественной закрутки получать результаты, хорошо согласующиеся с трёхмерным расчётом закрученного стержня МКЭ. При больших удельных углах начальной крутки, техническая теория даёт завышенные значения жесткости на кручение. В статье предложна модификация соотношений технической теории для определения жесткости на кручение с учетом больших углов начальной крутки.


    Темис Ю.М., Зиятдинов И.З. Новый метод вычисления жесткости на кручение в модели естественно-закрученного стержня. Математическое моделирование и численные методы, 2023, No 1, с. 64–80





  • 519.6:621.791.05+544.015.4 Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава

    Исаев В. И. (ИТПМ), Черепанов А. Н. (ИТПМ), Шапеев В. П. (ИТПМ/Новосибирский государственный университет)


    doi: 10.18698/2309-3684-2023-1-8191


    Предложена самосогласованная термокинетическая модель кристаллизации бинарного сплава в сварочном шве, модифицированного наноразмерными инокуляторами, введенными в сварочную ванну при лазерной сварке. Сформулированная комплексная модель процесса сварки однородных металлов описывает теплофизические процессы формирования макроскопических параметров сварного шва, его структуру в зависимости от режимов сварки и свойств наномодифицирующих порошков (краевого угла смачиваемости, концентрации модифицирующей добавки). Она основана на теплофизической модели воздействия лазерного излучения на металл при лазерной сварке металлических пластин, дополненной неравновесной моделью гетерогенного зарождения и роста кристаллической фазы на введенных в сварочную ванну модифицирующих наночастицах в процессе остывания и кристаллизации расплава в сварочном шве. Применением метода коллокации и наименьших квадратов проведено численное моделирование сварки встык пластин из бинарного сплава алюминия. Приведены поле температуры в изделии в процессе сварки, форма поперечного сечения шва, совпадающая с формой поперечного сечения сварочной ванны, и количественные характеристики его кристаллической структуры, полученные в результате моделирования. Исследовано влияние краевого угла смачивания наночастиц расплавом и их массовой концентрации на характерный размер кристаллического зерна в сварочном шве.


    Исаев В.И., Черепанов А.Н., Шапеев В.П. Исследование влияния смачиваемости и концентрации модифицирующих наночастиц на структуру шва при лазерной сварке алюминиевого сплава. Математическое моделирование и численные методы, 2023, No 1, с. 81–91.





  • 621.822.2, 519.63 Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения

    Соколов Н. В. (АО НИИтурбокомпрессор им. В.Б. Шнеппа/Казанский национальный исследовательский технологический университет), Хадиев М. Б. (Казанский национальный исследовательский технологический университет), Федотов П. Е. (Казанский (Приволжский) федеральный университет/ООО «АСТ Поволжье»), Федотов Е. М. (ООО «АСТ Поволжье»)


    doi: 10.18698/2309-3684-2023-1-92111


    Представлены исследования влияния класса вязкости подаваемого масла ISO VG32 и ISO VG46 в широком диапазоне скоростей ротора и рабочих зазорах на локальные и интегральные характеристики упорного подшипника скольжения с неподвижными подушками компрессора. Исследования проведены с помощью программы расчетов Sm2Px3Txτ на основе результатов численных экспериментов подшипника. Программа построена численной реализацией нестационарной периодической термоупругогидродинамической (ПТУГД) математической модели работы упорного подшипника. Результаты исследований указывают на существенное влияние класса вязкости масла на основные характеристики и температурный режим работы упорного подшипника. При замене масла ISO VG46 на более жидкое ISO VG32 происходит заметное снижение температур подушек подшипника и потерь мощности. Однако уровень этого изменения определяется задаваемым рабочим зазором между вращающимся упорным диском и подушками подшипника. Проанализировано влияние класса вязкости масла и профиля рабочей поверхности на температурный режим работы подушки. Определяются величина и расположение максимальной температуры подушки упорного подшипника, а также возможность применения на практике эталонной точки 75/75 из API-670.


    Соколов Н.В., Хадиев М.Б., Федотов П.Е., Федотов Е.М. Численное исследование влияния класса вязкости смазки на работу упорного подшипника скольжения. Математическое моделирование и численные методы, 2023, No 1, с. 92–111.





  • 330.43, 519.23 Динамика макроэкономических показателей и взаимной торговли стран БРИКС и США

    Малинецкий Г. Г. (Институт прикладной математики им. М.В. Келдыша РАН), Махов С. А. (Институт прикладной математики им. М.В. Келдыша РАН)


    doi: 10.18698/2309-3684-2023-1-112123


    Целью исследования является прогнозирование основных тенденций и построение сценариев экономического развития стран БРИКС (Бразилии, Индии, Китая, России, ЮАР) и США. Построены автономные регрессионные макромодели, а также модель торговли между ними. В автономных подмоделях в качестве основных показателей используются численность населения, основной капитал, валовой внутренний продукт и вложения в основные фонды. Для описания динамики этих переменных были составлены авторегрессионные уравнения. Полученная система уравнений позволила описать историческую динамику демографических и макроэкономических индикаторов с 1990 по 2019 гг. и построить прогноз до 2030 г. Подмодель торговли позволила связать двусторонние торговые потоки с валовыми внутренними продуктами исследуемых экономик. Связь описывается степенной зависимостью экспортного потока от валового внутреннего продукта обоих торговых партнеров. В отличие от моделей гравитационного типа, параметры регрессионных уравнений считаются постоянными для каждой пары торговых партнеров в течение всего прогнозируемого временного промежутка. Проведенные расчеты показали, что модели удовлетворительно описывают динамику монотонно меняющихся показателей и могут использоваться в качестве простого инструментария для прогнозирования национальной и региональной экономики.


    Малинецкий Г.Г., Махов С.А. Динамика макроэкономических показателей и взаимной торговли стран БРИКС и США. Математическое моделирование и численные методы, 2023, No 1, с. 112–123.