Рубрикатор





Рубрика: "01.01.00 Математика"



519.6 Применение гибридных алгоритмов к экстремальным задачам на собственные значения лагранжевых динамических систем

Сулимов В.Д.(МГТУ им. Н.Э. Баумана), Шкапов П.М.(МГТУ им. Н.Э. Баумана), Гончаров Д.А.(МГТУ им. Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-4-84102


Рассмотрены экстремальные задачи для составляющих собственных спектров лагранжевых динамических систем. Математические модели исследуемых систем описаны матрицами, зависящими от параметров. Задачи на собственные значения, формулируемые для таких систем, в общем случае характеризуются спектрами, которые могут содержать кратные собственные значения. Частные критерии в экстремальных задачах предполагаются непрерывными, липшицевыми, многоэкстремальными и, возможно, не всюду дифференцируемыми функциями. Поиск глобальных решений проведен с использованием новых гибридных алгоритмов, объединяющих стохастический алгоритм сканирования пространства переменных и детерминированные методы локального поиска. Приведены численные примеры решения задач глобальной недифференцируемой минимизации максимальных собственных значений систем.


Сулимов В. Д., Шкапов П. М., Гончаров Д. А. Применение гибридных алгоритмов к экстремальным задачам на собственные значения лагранжевых динамических систем. Математическое моделирование и численные методы, 2016, №4 (12), c. 84-102



539.3+519.86 Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Димитриенко О.Ю.(МГТУ им. Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-105122


На основе разработанной авторами ранее модели многомерных сплошных сред в пространствах высокой размерности (более трех) предложена концепция применения этой модели для одной из главных задач, возникающих в теории обработки больших массивов данных — прогнозирования динамики изменения кластеров данных. Модель многомерных сплошных сред в пространствах высокой размерности включает в себя интегральные законы сохранения, которые сформулированы для кластеров информационных данных, а также модель кинематики движения и деформации кластеров. Разработана модель деформируемого многомерного кластера, движение которого в многомерном пространстве данных включает в себя поступательное, вращательное движение и однородную деформацию растяжения-сжатия. Сформулирована система дифференциальных тензорных уравнений, описывающих движение деформируемого многомерного кластера во времени. Разработан численный алгоритм решения этой системы дифференциальных уравнений для эллипсоидальной модели многомерного кластера. Рассмотрен пример применения разработанной модели для прогнозирования динамики экономических данных — данных о покупках товаров в крупном супермаркете. Приведены результаты прогнозирования данных о покупках различных групп покупателей.


Димитриенко Ю. И., Димитриенко О. Ю. Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных. Математическое моделирование и численные методы, 2016, №1 (9), c. 105-122



536.2(075) Применение метода контрольного объема для расчета нестационарных процессов в трубопроводных системах

Волков В.Ю.(АО ОКБ "ГИДРОПРЕСС"), Голибродо Л.А.(АО ОКБ "ГИДРОПРЕСС"), Зорина И.Г.(МГТУ им. Н.Э.Баумана), Кудрявцев О.В.(АО ОКБ "ГИДРОПРЕСС"), Крутиков А.А.(АО ОКБ "ГИДРОПРЕСС"), Скибин А.П.(АО ОКБ "ГИДРОПРЕСС")


doi: 10.18698/2309-3684-2016-4-3446


Для моделирования трубопроводных систем совершен переход от методов, основанных на уравнениях массового баланса, базирующихся на первом и втором законах Кирхгофа, к математическому описанию гидравлической сети с помощью дискретизации уравнения неразрывности, для чего был применен метод контрольного объема. Представлено расширение разработанного метода контрольного объема для расчета нестационарных процессов потокораспределения в гидравлических сетях. Данное расширение метода разработано для медленно протекающих процессов в гидравлических сетях и не подходит для расчета быстро протекающих местных процессов, таких как гидроудар. Метод успешно апробирован на примере решения нескольких тестовых задач.


Волков В. Ю., Голибродо Л. А., Зорина И. Г., Кудрявцев О. В., Крутиков А. А., Скибин А. П. Применение метода контрольного объема для расчета нестационарных процессов в трубопроводных системах. Математическое моделирование и численные методы, 2016, №4 (12), c. 34-46



519.63 О построении параллельных многосеточных алгоритмов

Мартыненко С.И.(ФГУП «Центральный институт авиационного моторостроения имени П.И. Баранова»)


doi: 10.18698/2309-3684-2015-2-105120


Рассмотрены основные направления развития параллельных классических многосеточных алгоритмов и их характерные недостатки. На примере универсальной многосеточной технологии показана возможность эффективного распараллеливания сглаживающих итераций на уровнях с грубыми сетками; многосеточная структура использована для построения гибридного многосеточного метода. Приведены оценки ускорения и эффективности различных параллельных многосеточных алгоритмов, а также результаты вычислительных экспериментов.


Мартыненко С. И. О построении параллельных многосеточных алгоритмов. Математическое моделирование и численные методы, 2015, №2 (6), c. 105-120



519.612.2 Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений

Марчевский И.К.(МГТУ им.Н.Э.Баумана), Пузикова В.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-3752


Для выбора оптимального в смысле вычислительной эффективности итерацион ного метода решения систем линейных алгебраических уравнений, возникающих при дискретизации дифференциальных уравнений в частных производных, помимо скорости сходимости следует учитывать такие характеристики системы и метода, как число обусловленности, коэффициент сглаживания, показатель «затратности». Последние две характеристики вычисляют по коэффициентам усиления гармоник, которые позволяют судить о сглаживающих свойствах итерационного метода и его «затратности», т. е. о том, насколько хуже метод подавляет низкочастотные компоненты ошибки по сравнению с высокочастотными. Предложен способ определения коэффициентов усиления гармоник, основанный на использовании дискретного преобразования Фурье. В качестве примера приведён анализ эффективности метода BiCGStab c ILU и многосеточным предобусловливанием при решении разностных аналогов уравнений Гельмгольца и Пуассона.


Марчевский И. К., Пузикова В. В. Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений. Математическое моделирование и численные методы, 2014, №4 (4), c. 37-52



517.9+532+536 Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость

Полянин А.Д.(Институт проблем механики им. А.Ю. Ишлинского РАН/МГТУ им.Н.Э.Баумана), Сорокин В.Г.(МГТУ им.Н.Э.Баумана), Вязьмин А.В.(Московский государственный машиностроительный университет)


doi: 10.18698/2309-3684-2014-4-5373


Исследованы нелинейные гиперболические реакционно-диффузионные уравнения с переменным коэффициентом переноса при наличии запаздывания. Приведены некоторые точные решения с обобщенным разделением переменных. Большинство рассматриваемых уравнений содержат функциональный произвол. Получены условия глобальной нелинейной неустойчивости решений широкого класса систем гиперболических реакционно-диффузионных уравнений с запаздыванием. Показано, что при выполнении условий неустойчивости задачи с начальными данными и некоторые начально-краевые задачи с запаздыванием являются некорректными по Адамару. Решена обобщенная задача Стокса с периодическим граничным условием, описываемая линейным диффузионным уравнением с запаздыванием.


Полянин А. Д., Сорокин В. Г., Вязьмин А. В. Нелинейные реакционно-диффузионные уравнения гиперболического типа с запаздыванием: точные решения, глобальная неустойчивость. Математическое моделирование и численные методы, 2014, №4 (4), c. 53-73



681.513.5 Стабилизация неустойчивого предельного цикла релейной хаотической системы

Краснощеченко В.И.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-2-87104


В работе представлен алгоритм синтеза для стабилизации неустойчивого предельного цикла релейной хаотической системы. В алгоритме используется одномерное дис-кретное отображение Пуанкаре для нахождения неподвижных точек периода (предельных циклов исходной непрерывной системы). Показано, что классический метод OGY синтеза апериодического регулятора не решает поставленной задачи, так как учитывает только скорость выходной координаты, что недостаточно для стабилизации. Предложенный алгоритм основан на поиске необходимого коэффициента регулятора путем решения обратной задачи: сначала задается некоторый коэффициент, а затем осуществляется двухэтапная процедура (с коррекцией) перехода системы в следующую точку переключения. Задача коррекции осуществляется в полной окрестности (положения и скорости выходной координаты) и обеспечивает стабилизацию предельного цикла корректирующими импульсами малой амплитуды в вы-бранной области начальных условий (области стабилизации), о чем свидетельствуют приведенные результаты моделирования.


Краснощеченко В. И. Стабилизация неустойчивого предельного цикла релейной хаотической системы. Математическое моделирование и численные методы, 2015, №2 (6), c. 87-104



517.9:519.6 Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки

Малинецкий Г.Г.(Институт прикладной математики им. М.В. Келдыша РАН), Фаллер Д.С.(Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2014-3-111125


Рассмотрено появление хаотических аттракторов в системе трех обыкновенных дифференциальных уравнений, возникающих в теории моделей «реакция — диффузия». Исследованы динамика соответствующих одномерных и двумерных отображений и ляпуновские показатели возникающих аттракторов. Показано, что переход к хаосу происходит по нетрадиционному сценарию, связанному с многократным рождением и исчезновением хаотических режимов, который изучен для одномерных отображений с острой вершиной и квадратичным минимумом. С помощью численного анализа исследованы характерные особенности системы: наличие областей бистабильности и гиперболичности, кризис хаотических аттракторов.


Малинецкий Г. Г., Фаллер Д. С. Анализ бифуркаций в двухмодовой аппроксимации системы Курамото — Цузуки. Математическое моделирование и численные методы, 2014, №3 (3), c. 111-125



519.63 Разработка и тестирование методов решения жестких обыкновенных дифференциальных уравнений

Галанин М.П.(Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Ходжаева С.Р.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-95119


Приведены исследования (m,k)-метода, одностадийной комплексной схемы Розенброка, метода конечных суперэлементов и явного четырехстадийного метода Рунге — Кутты применительно к решению жестких систем обыкновенных дифференциальных уравнений. Анализ тестовых расчетов показал, что лучшим выбором для систем с большим числом жесткости является одностадийная комплексная схема Розенброка (CROS). Метод конечных суперэлементов (МКСЭ) является «точным» для решения линейных систем обыкновенных дифференциальных уравнений, лучшим вспомогательным методом для его реализации является (4,2)-метод. Построен и протестирован вариант метода конечных суперэлементов для решения нелинейных задач, оказавшийся непригодным для задач большой жесткости.


Галанин М. П., Ходжаева С. Р. Разработка и тестирование методов решения жестких обыкновенных дифференциальных уравнений. Математическое моделирование и численные методы, 2014, №4 (4), c. 95-119



1>>