Рубрика: "01.01.00 Математика"



533.95:539.17 Моделирование процессов атомной и молекулярной физики на основе квантовой теории рассеяния

Позднеев С.А.(ФИАН/)


doi: 10.18698/2309-3684-2017-1-321


Представлены методы и средства моделирования различных характеристик (таких как сечения, скорости реакций и др.) элементарных процессов атомной и молекулярной физики, основанные на квантовой теории рассеяния в системе нескольких частиц. Проанализированы результаты моделирования процессов рассеяния электронов и атомов двухатомными и многоатомными молекулами, находящимися в определенных возбужденных колебательно-вращательных состояниях. Рассмотрены различные приближения, необходимые для построения адекватных моделей реальных физических систем, состоящих из нескольких тел, которые применимы для моделирования как прямых реакций, так и реакций, происходящих с образованием промежуточного переходного комплекса. Результаты моделирования сечений столкновений электронов и атомов с молекулами и молекул между собой сопоставлены с имеющимися экспериментальными данными и результатами расчетов других авторов.


Позднеев С. А. Моделирование процессов атомной и молекулярной физики на основе квантовой теории рассеяния. Математическое моделирование и численные методы, 2017, №1 (13), c. 3-21



519.63 Разработка и тестирование методов решения жестких обыкновенных дифференциальных уравнений

Галанин М.П.(Институт прикладной математики им. М.В. Келдыша РАН/МГТУ им.Н.Э.Баумана), Ходжаева С.Р.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-95119


Приведены исследования (m,k)-метода, одностадийной комплексной схемы Розенброка, метода конечных суперэлементов и явного четырехстадийного метода Рунге — Кутты применительно к решению жестких систем обыкновенных дифференциальных уравнений. Анализ тестовых расчетов показал, что лучшим выбором для систем с большим числом жесткости является одностадийная комплексная схема Розенброка (CROS). Метод конечных суперэлементов (МКСЭ) является «точным» для решения линейных систем обыкновенных дифференциальных уравнений, лучшим вспомогательным методом для его реализации является (4,2)-метод. Построен и протестирован вариант метода конечных суперэлементов для решения нелинейных задач, оказавшийся непригодным для задач большой жесткости.


Галанин М. П., Ходжаева С. Р. Разработка и тестирование методов решения жестких обыкновенных дифференциальных уравнений. Математическое моделирование и численные методы, 2014, №4 (4), c. 95-119



539.3+519.86 Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Димитриенко О.Ю.(МГТУ им. Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-105122


На основе разработанной авторами ранее модели многомерных сплошных сред в пространствах высокой размерности (более трех) предложена концепция применения этой модели для одной из главных задач, возникающих в теории обработки больших массивов данных — прогнозирования динамики изменения кластеров данных. Модель многомерных сплошных сред в пространствах высокой размерности включает в себя интегральные законы сохранения, которые сформулированы для кластеров информационных данных, а также модель кинематики движения и деформации кластеров. Разработана модель деформируемого многомерного кластера, движение которого в многомерном пространстве данных включает в себя поступательное, вращательное движение и однородную деформацию растяжения-сжатия. Сформулирована система дифференциальных тензорных уравнений, описывающих движение деформируемого многомерного кластера во времени. Разработан численный алгоритм решения этой системы дифференциальных уравнений для эллипсоидальной модели многомерного кластера. Рассмотрен пример применения разработанной модели для прогнозирования динамики экономических данных — данных о покупках товаров в крупном супермаркете. Приведены результаты прогнозирования данных о покупках различных групп покупателей.


Димитриенко Ю. И., Димитриенко О. Ю. Модель многомерной деформируемой сплошной среды для прогнозирования динамики больших массивов индивидуальных данных. Математическое моделирование и численные методы, 2016, №1 (9), c. 105-122



531.36:521.1 Моделирование поиска стационарных орбит космической станции в окрестности астероида сжатой формы

Родников А.В.(МГТУ им. Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-3-110118


Предложен численно-аналитический алгоритм поиска стационарных орбит космической станции в окрестности астероида, соответствующих положениям относительного равновесия станции в плоскости, которая образована осями прецессии и собственного вращения астероида, в случае, когда астероид представляется близким к динамически симметричному твердым телом, сжатым вдоль оси динамической симметрии. Алгоритм основан на представлении гравитационного потенциала астероида композицией потенциалов двух комплексно-сопряженных точечных масс и состоит из последовательных замен переменных, сводящих задачу к аналитическому и численному решению алгебраических уравнений. Приведены некоторые факты об эволюции стационарных орбит при изменении угловой скорости прецессии.


Родников А. В. Моделирование поиска стационарных орбит космической станции в окрестности астероида сжатой формы. Математическое моделирование и численные методы, 2016, №3 (11), c. 110-118



536.2(075) Применение метода контрольного объема для расчета нестационарных процессов в трубопроводных системах

Волков В.Ю.(АО ОКБ "ГИДРОПРЕСС"), Голибродо Л.А.(АО ОКБ "ГИДРОПРЕСС"), Зорина И.Г.(МГТУ им. Н.Э.Баумана), Кудрявцев О.В.(АО ОКБ "ГИДРОПРЕСС"), Крутиков А.А.(АО ОКБ "ГИДРОПРЕСС"), Скибин А.П.(АО ОКБ "ГИДРОПРЕСС")


doi: 10.18698/2309-3684-2016-4-3446


Для моделирования трубопроводных систем совершен переход от методов, основанных на уравнениях массового баланса, базирующихся на первом и втором законах Кирхгофа, к математическому описанию гидравлической сети с помощью дискретизации уравнения неразрывности, для чего был применен метод контрольного объема. Представлено расширение разработанного метода контрольного объема для расчета нестационарных процессов потокораспределения в гидравлических сетях. Данное расширение метода разработано для медленно протекающих процессов в гидравлических сетях и не подходит для расчета быстро протекающих местных процессов, таких как гидроудар. Метод успешно апробирован на примере решения нескольких тестовых задач.


Волков В. Ю., Голибродо Л. А., Зорина И. Г., Кудрявцев О. В., Крутиков А. А., Скибин А. П. Применение метода контрольного объема для расчета нестационарных процессов в трубопроводных системах. Математическое моделирование и численные методы, 2016, №4 (12), c. 34-46



517.9:532:536 Нелинейные реакционно-диффузионные уравнения с запаздыванием и переменными коэффициентами переноса: решения с обобщенным и функциональным разделением переменных

Полянин А.Д.(Институт проблем механики им. А.Ю. Ишлинского РАН/МГТУ им.Н.Э.Баумана), Журов А.И.(Cardiff University/Институт проблем механики им. А.Ю. Ишлинского РАН)


doi: 10.18698/2309-3684-2015-4-337


Описан ряд новых точных решений с простым, обобщенным и функциональным разделениями переменных одномерных нелинейных реакционно-диффузионных уравнений с запаздывающим аргументом и переменными коэффициентами переноса. Все представленные уравнения содержат одну, две или три произвольные функции одного аргумента. Решения с обобщенным разделением переменных находят в виде , где функции определяют в ходе анализа с использованием новой модификации метода функциональных связей. Некоторые из результатов обобщены на случай нелинейных реакционно-диффузионных уравнений с переменным запаздыванием. Также представлены точные решения более сложных трехмерных реакционно-диффузионных уравнений с запаздыванием. Большинство полученных решений содержат свободные параметры и могут быть использованы для решения некоторых задач, а также для тестирования приближенных аналитических и численных методов решения нелинейных уравнений в частных производных с запаздыванием.


Полянин А. Д., Журов А. И. Нелинейные реакционно-диффузионные уравнения с запаздыванием и переменными коэффициентами переноса: решения с обобщенным и функциональным разделением переменных. Математическое моделирование и численные методы, 2015, №4 (8), c. 3-37



519.862.6 Аналитические зависимости между коэффициентами детерминации и соотношением дисперсий ошибок исследуемых признаков в модели регрессии Деминга

Базилевский М.П.(Иркутский государственный университет путей сообщения)


doi: 10.18698/2309-3684-2016-2-104116


Рассмотрена проблема построения регрессионных моделей, в которых все переменные имеют стохастический характер. Для ее решения предложено использовать коэффициент детерминации. Получены аналитические зависимости коэффициентов детерминации от соотношения дисперсий ошибок исследуемых признаков. Поставлена оптимизационная задача, предполагающая максимизацию суммы коэффициентов детерминации каждого уравнения в регрессии Деминга. Дан модельный пример численной обработки регрессии Деминга с ее известными параметрами и ошибками признаков.


Базилевский М. П. Аналитические зависимости между коэффициентами детерминации и соотношением дисперсий ошибок исследуемых признаков в модели регрессии Деминга. Математическое моделирование и численные методы, 2016, №2 (10), c. 104-116



551.513 Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы

Пархоменко В.П.(Вычислительного центра РАН/МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-3-93109


Представлен анализ некоторых факторов, влияющих на выполнение параллельной реализации модели общей циркуляции атмосферы на многопроцессорной электронно-вычислительной машине кластерного типа. Рассмотрены несколько модификаций первоначального параллельного кода этой модели, направленных на улучшение его вычислительной эффективности, баланса загрузки процессоров. Осуществлена модификация численной схемы по времени модели общей циркуляции атмосферы для возможности осуществления параллельных расчетов блоков динамики и физики. Предлагаемая процедура используется вместе с процедурами распараллеливания блоков динамики и физики на основе декомпозиции расчетной области, что позволяет оптимизировать загрузку процессоров и повысить эффективность распараллеливания. Результаты применения схемы баланса загрузки блока физики рассмотренной модели дают возможность усложнения блока физики без увеличения общего времени счета. Приведены результаты численных экспериментов.


Пархоменко В. П. Алгоритм увеличения вычислительной производительности и баланса загрузки процессоров для моделирования общей циркуляции атмосферы. Математическое моделирование и численные методы, 2016, №3 (11), c. 93-109



519.612.2 Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений

Марчевский И.К.(МГТУ им.Н.Э.Баумана), Пузикова В.В.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-4-3752


Для выбора оптимального в смысле вычислительной эффективности итерацион ного метода решения систем линейных алгебраических уравнений, возникающих при дискретизации дифференциальных уравнений в частных производных, помимо скорости сходимости следует учитывать такие характеристики системы и метода, как число обусловленности, коэффициент сглаживания, показатель «затратности». Последние две характеристики вычисляют по коэффициентам усиления гармоник, которые позволяют судить о сглаживающих свойствах итерационного метода и его «затратности», т. е. о том, насколько хуже метод подавляет низкочастотные компоненты ошибки по сравнению с высокочастотными. Предложен способ определения коэффициентов усиления гармоник, основанный на использовании дискретного преобразования Фурье. В качестве примера приведён анализ эффективности метода BiCGStab c ILU и многосеточным предобусловливанием при решении разностных аналогов уравнений Гельмгольца и Пуассона.


Марчевский И. К., Пузикова В. В. Анализ эффективности итерационных методов решения систем линейных алгебраических уравнений. Математическое моделирование и численные методы, 2014, №4 (4), c. 37-52



1>>