519.6 Методы численного решения дифференциального уравнения смешанного типа в неограниченной области
doi: 10.18698/2309-3684-2021-1-91109
Разработаны методы численного решения задачи для уравнения смешанного типа в неограниченной области в случае, когда решение удовлетворяет уравнению теплопроводности в ограниченной области и уравнению Лапласа в оставшейся части пространства. Предложен способ задания искусственных граничных условий, позволяющий проводить расчёты в ограниченной области. Построен итерационный алгоритм нахождения численного решения в ограниченной области, такой что численное решение сходится к проекции точного решения на ограниченную область. Исследована скорость сходимости итерационного алгоритма. Задача решена в одномерном плоском, в цилиндрически и сферически симметричных случаях. Приведены примеры решений.
Галанин М.П., Сорокин Д.Л., Ухова А.Р. Методы численного решения дифференциального уравнения смешанного типа в неограниченной области. Математическое моделирование и численные методы, 2021, № 1, с. 91–109.
519.63 Development and testing for methods of solving stiff ordinary differential equations
doi: 10.18698/2309-3684-2014-4-95119
The paper is aimed at research of the (m,k)-method, CROS, finite superelement method and 4-stage explicit Runge–Kutta method for solving stiff systems of ordinary differential equations. Analysis of tests results showed that the best choice for systems with high stiffness is CROS. The finite superelement method is the «precise» method for solving linear systems of ordinary differential equations, the best supporting method for its implementation is (4,2)-method. The variation of the finite superelement method has been built and tested for solving nonlinear problems, this method proved to be unsuitable for problems with high stiffness.
Galanin M., Khodzhaeva S. Development and testing for methods of solving stiff ordinary differential equations. Маthematical Modeling and Coтputational Methods, 2014, №4 (4), pp. 95-119