Анастасия Александровна Маремшаова (МГТУ им.Н.Э.Баумана) :


Статьи:

539.3 Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Богданов И. О. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана), Анохин Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-3854


Рассматривается задача моделирования потери устойчивости конструкций из композиционных материалов вследствие нестационарных тепловых воздействий на них, с учетом температурной зависимости свойств компонентов композита. Сформулированы системы уравнений для расчета основного и варьированного состояний конструкции. Предложена классификация задач устойчивости. Описано применение метода конечных элементов для определения критической температуры и отвечающей ей формы потери устойчивости конструкции. Сформулирована локальная обобщенная задача на собственные значения и произведена верификация предложенной модели с помощью программного комплекса SMCM, разработанного в НОЦ «Симплекс» МГТУ им. Н.Э. Баумана, а также с помощью ПК ANSYS. Показано, что результаты расчета собственных форм и собственных значений в тестовой задаче достаточно хорошо совпадают.


Димитриенко Ю.И., Богданов И.О., Юрин Ю.В., Маремшаова А.А., Анохин Д. Конечно-элементное моделирование нестационарной термоустойчивости композитных конструкций. Математическое моделирование и численные методы, 2024, № 1, с. 38–54.



539.36 Конечно-элементное моделирование собственных колебаний оболочечных конструкций

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Богданов И. О. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-317


Предложен численный алгоритм решения задачи на собственные колебания для тонкостенных оболочечных конструкций, на основе метода конечных элементов. Разработан программный модуль в составе программного комплекса SMCM, который реализует предложенный численный алгоритм. Было проведено решение тестовой задачи для собственных колебаний цилиндрического оболочечного элемента конструкции. Проведен сравнительный анализ собственных частот и собственных форм с аналогичными результатами, полученными с помощью двумерного оболочечного решения в ПК ANSYS, а также с результатами решения трехмерной задачи на собственные колебания в ПК ANSYS.


Димитриенко Ю.И., Юрин Ю.В., Богданов И.О., Маремшаова А.А. Конечно-элементное моделирование собственных колебаний оболочечных конструкций. Математическое моделирование и численные методы, 2023, № 3, с. 3–17.



539.3 Конечно-элементное моделирование температурных полей в тонкостенных многослойных анизотропных оболочках

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Юрин Ю. В. (МГТУ им.Н.Э.Баумана), Коряков М. Н. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-1-4363


Рассмотрена проблема разработки модели для расчета температурных полей в тонкостенных многослойных криволинейно-анизотропных тонких оболочках произвольной геометрической формы, в том числе составных. Как правило для решения этой задачи используется конкретная координатная запись уравнений теории теплопроводности, что создает определенные трудности для расчета сложных составных оболочек. В данной работе предложено использовать инвариантную запись вариационной постановки задач теории теплопроводности, с последующим применением процедуры конечно-элементного алгоритма. В результаты выведены матричное дифференциальное уравнение для определения температурного поля в узлах конечно-элементной сетки. Разработан программный модуль для конечно-элементного решения задачи нестационарной теплопроводности оболочек. Модуль функционирует в составе программного комплекса SMCM, созданного в Научно-образовательном центре «Суперкомпьютерного инженерного моделирования и разработки программных комплексов» МГТУ им. Н.Э. Баумана (НОЦ «СИМПЛЕКС»). Приведен пример решения задачи расчета нестационарного температурного поля в цилиндрической оболочке с продольно-поперечным подкреплением. Проведено сравнение численного моделирования с аналогичными расчетами в ПК ANSYS, которое показало высокую точность предложенного метода: относительно отклонение результатов не превышает 0,5 %.


Димитриенко Ю.И., Юрин Ю.В., Коряков М.Н., Маремшаова А.В. Конечно-элементное моделирование температурных полей в тонкостенных многослойных оболочечных элементах конструкций. Математическое моделирование и численные методы, 2023, No 1, с. 43–63



519.6 Сравнение модифицированного метода Ψ-преобразования и канонического метода роя частиц

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Маремшаова А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2018-3-2237


При решении многих прикладных задач возникает проблема отыскания глобального экстремума. Особую актуальность представляют методы оптимизации, позволяющие эффективно решать задачи, когда целевая функция зависит от сложной математической модели, требующей для своего решения больших вычислительных ресурсов. В данной работе проведено сравнение метода Ψ-преобразования и канонического метода роя частиц. Выявлены недостатки некоторых известных алгоритмов метода Ψ-преобразования и предложена модификация, основанная на замене случайного закона с равномерным распределением для генерации статистических реализаций на второй и последующих итерациях стандартного алгоритма нормальным законом распределения с параметрами, определяемыми по результатам предыдущей итерации. На основе обширного вычислительного эксперимента показано преимущество модифицированного алгоритма метода Ψ-преобразования по сравнению с каноническим алгоритмом метода роя частиц.


Бушуев А.Ю., Маремшаова А.А. Сравнение модифицированного метода Ψ-преобразования и канонического метода роя частиц. Математическое моделирование и численные методы, 2018, № 3, с. 22–37.