519.6 Моделирование квазистатической надежности конструкции технической системы
doi: 10.18698/2309-3684-2018-3-3848
Рассматривается техническая система, содержащая несколько конструктивных элементов, работающих под действием комплекса внешних нагрузок. Для такой системы предложен метод расчёта надёжности по критерию наступления одного или нескольких предельных состояний конструкции элементов.
Дубровин В.М., Семёнов К.С. Моделирование квазистатической надежности конструкции технической системы. Математическое моделирование и численные методы, 2018, № 3, с. 38–48.
539.3 Моделирование нагрузок на составную цилиндрическую оболочку с упругим заполнителем
doi: 10.18698/2309-3684-2019-1-2742
Предложен метод расчёта нагрузок на составную цилиндрическую оболочку, со-стоящую из внешней и внутренней оболочек, соединенных системой упругих попе-речных опор. Между оболочками находится упругий заполнитель. Метод учиты-вает геометрию и механические характеристики оболочек, упругие характери-стики поперечных опор и физико-механические свойства материала упругого за-полнителя. При решении задачи предполагается, что материал упругого заполни-теля удовлетворяет основным соотношениям теории упругости, а упругие харак-теристики заполнителя при динамическом нагружении соответствуют характе-ристикам при статическом нагружении. Это позволяет использовать полученные результаты для решения задач как в статической, так и динамической постанов-ке. Выбором различного сочетания характеристик оболочек и упругого заполните-ля можно обеспечить наиболее благоприятные условия нагружения как внутрен-ней, так и внешней оболочек в зависимости от постановки задачи. В качестве примера исследовались нагрузки на внутреннюю оболочку в зависимости от ха-рактеристик внешней оболочки и погонной жесткости упругого заполнителя. Аналогично могут быть получены оценки нагрузок, действующих на внешнюю обо-лочку
Дубровин В.М., Семёнов К.С. Моделирование нагрузок на составную цилин-дрическую оболочку с упругим заполнителем. Математическое моделирование и численные методы, 2019, № 1, с. 27–42.
doi: 10.18698/2309-3684-2017-3-3848
Предложен метод расчета несущей способности гладкой цилиндрической оболочки, находящейся длительное время под действием комплекса осевых и поперечных нагрузок. Предполагается, что при длительном нагружении материал оболочки подвержен явлению ползучести, что в свою очередь влияет на несущую способность оболочки. Получены соотношения, позволяющие оценить это влияние
Дубровин В.М., Семёнов К.С. Моделирование несущей способности гладкой цилиндрической оболочки в условиях ползучести материала. Математическое мо- делирование и численные методы, 2017, No 3, с. 38–48.
doi: 10.18698/2309-3684-2018-2-3246
Цилиндрическая оболочка, длительное время находящаяся под действием значительных по величине нагрузок, может терять возможность выдерживать уровень этих нагрузок, так как снижается её несущая способность. Это связано с тем, что материал оболочки подвержен явлению ползучести. Как показывают исследования [1-3], ползучесть заметно проявляется даже при нормальной температуре и напряжениях, значительно меньших предела текучести материала оболочки. Экспериментальные и теоретические работы по устойчивости оболочек показывают [4-5], что основной причиной снижения критической нагрузки для реальных оболочек по сравнению с идеальными оболочками являются начальные несовершенства конструкции. Поэтому следует ожидать, что дополнительные прогибы, которые возникают в результате деформации ползучести, оказывают существенное влияние на несущую способность оболочки. В работе предложен метод расчета несущей способности цилиндрической оболочки, подкрепленной продольным (стрингеры) и поперечным (шпангоуты) силовым набором, находящейся под действием осевых и поперечных нагрузок, а также внутреннего избыточного давления. В качестве примера рассмотрена оболочка, материалом которой является алюминиево-магниевый сплав АМг6-М и АМг6-Н. Получены графики зависимости несущей способности от времени эксплуатации.
Дубровин В.М., Семенов К.С. Моделирование несущей способности подкрепленной силовым набором цилиндрической оболочки в условиях ползучести материала. Математическое моделирование и численные методы, 2018, № 2, с. 32–46.