doi: 10.18698/2309-3684-2018-3-3848
We consider the technical system, comprising a plurality of structural elements operating under the influence of a complex external loads. For such a system, we proposed a method for calculating the reliability criterion for the occurrence of one or more of the limit states design elements.
[1] Barlou R., Proshan F. Matematicheskaya teoriya nadezhnosti [Mathematical theory of reliability]. Moscow, Soviet Radio Publ., 1969. 188 p.
[2] Sadykhov G.S. Problemy mashinostroeniya i nadezhnosti mashin – Journal of Machinery Manufacture and Reliability, 2005, no. 1, pp. 119-122.
[3] Sadykhov G.S., Kuznetsov V.I. Problemy mashinostroeniya i nadezhnosti mashin – Journal of Machinery Manufacture and Reliability, 2005, no. 4, pp. 96- 99.
[4] Dubrovin V.M., Dubrovin S.V. Nadezhnost i control kachestva – Reliability and quality control, 1999, no. 2, pp.19-24.
[5] Ostreikovskii V.A. Teoriya nadezhnosti [Reliability theory]. Moscow, Vysshaya Shkola Publ., 2003, 463 p.
[6] Alon N., Spencer J. Veriyatnostnyi metod [Probabilistic method]. Moscow, BINOM Publ., 2011. 320 p.
[7] Aksenchik A.V. Teoriya veroztnostei i matematicheskaya statistika [Probability theory and mathematical statistics]. Minsk, BSUIR, 2011. 184 p.
[8] Polovko A.M., Gurov S.V. Osnovy teorii nadezhnosti [Fundamentals of reliability theory]. Spb., BHV-Peterburg Publ., 2006. 702 p.
[9] Dubrovin V.M., Butina T.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 2, pp. 46–57.
[10] Dubrovin V.M., Butina T.A. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2016, no. 3, pp. 24–32.
[11] Dubrovin V.M., Butina T.A., Polyakova N.S. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2015, no. 4, pp. 38–52.
[12] Dimitrienko Yu.I., Yurin Yu.V., Evropin S.V. Izvestiya Vuzov. Mashinstroenie – News of Universities. Engineering, 2013, no. 11, pp.3-11.
[13] Dimitrienko Yu.I., Yurin Yu.V., Shiverskii E.A., Izvestiya Vuzov. Mashinstroenie – News of Universities. Engineering, 2013, no. 12, pp.12-19.
[14] Alexandrovskaya L.N., Afanasyev A.P., Lisov A.A. Sovremennye metidy obespecheniya bezotkaznosti slozhnyh tehnicheskikh sistem [Modern methods of ensuring reliability of complex technical systems]. Moscow, Logos, 2001, 208 p.
[15] Pugachev V.S. Teoriya veroyaztnosti i matematicheskaya statistika [Probability theory and mathematical statistics]. Moscow, Fizmatlit Publ., 2002. 496 p.
[16] Algazin O.D., Butina. T.A., Dubrovin V.M. Vestnik MGTU im. N.E. Baumana. Spec. vypusk. Mathematicheskoe modelirovanie – Herald of the Bauman Moscow State Technical University. Sp. Mathematical Modeling, 2011,3 s.
[17] Dimitrienko Y.I. Nelineinaya mehanika sploshnoi sredy [Nonlinear continuum mechanics]. Moscow, PHYSMATH, 2009, 629 p.
[18] Dimitrienko Yu.I. Universalnye zakony mekhaniki i elektrodinamiki. T. 2. [Universal laws of continuum mechanics and electrodynamics. V.2]. 2011, BMSTU Publ., 559 p.
[19] Ventcel E.S., Ovcharov L.A. Teoriya veroyatnostei i eyo inzhenernye priloxheniya [Probability theory and its engineering applications]. Moscow, ACDEMIYA Publ., 2003. 464 p.
[20] Bulinskii A.V., Shiryaev A.N. Teoriya sluchainykh processov [Random process theory]. Moscow, Fizmatlit Publ., 2005. 408 p.
[21] Kobzar A.I. Prikladnaya matematicheskaya statistika. Dlya inzhenerov I nauchnykh rabotnikov. [Applied mathematical statistics. For engineers and scientists.] Moscow, Fizmatlit Publ., 2006. 816 p.
Дубровин В.М., Семёнов К.С. Моделирование квазистатической надежности конструкции технической системы. Математическое моделирование и численные методы, 2018, № 3, с. 38–48.
Количество скачиваний: 696