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Рассматривается техническая система, содержащая несколько конструктивных 
элементов, работающих под действием комплекса внешних нагрузок. Для такой си-
стемы предложен метод расчёта надёжности по критерию наступления одного или 
нескольких предельных состояний конструкции элементов. 
 
Ключевые слова: техническая система, предельное состояние, прочность, устой-
чивость, несущая способность, нагрузка, критерий надёжности, коэффициент 
надёжности, относительное предельное отклонение. 

 
Введение. Отказом конструкции технической системы считается 

наступление хотя бы одного из возможных состояний: потеря прочно-
сти, потеря устойчивости, появление недопустимых упругих деформа-
ций, появление недопустимых пластических деформаций. При этом 
под предельным состоянием понимается такое, при котором нагрузка, 
действующая на конструкцию, становится равной нагрузке, соответ-
ствующей исчерпанию несущей способности. Вероятность отсутствия 
предельных состояний (вероятность неразрушения) является крите-
рием надёжности конструкции. [1-4] 

Математическая модель квазистатической надёжности. Бли-
зость состояние конструкции к предельному можно характеризовать 
критическими параметрами, поэтому вероятность неразрушения в 
принципе рассчитывается как параметрическая надёжность. Критиче-
ские параметры конструкции зависят одновременно от двух групп слу-
чайных факторов: факторов, определяющих нагрузку, и факторов, 
определяющих несущую способность. Случайный характер несущей 
способности обусловлен разбросом физико-механических свойств 
конструкционных материалов и погрешностями изготовления, в част-
ности наличием допусков на размеры. Нагрузки, действующие на кон-
струкцию, также имеют случайный характер, обусловленный услови-
ями эксплуатации системы.  

Случайные вариации большинства возмущающих факторов про-
исходят во времени, поэтому нагрузки и несущая способность кон-
струкции имеет характер случайных процессов. Однако, если этой за-
висимостью нагрузок и несущей способностью от времени 
пренебречь, полагая их консервативными случайными величинами, то 
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будем иметь квазистатический метод расчёта надёжности конструк-
ций. Применение квазистатических методов в расчётах надёжности 
может быть обосновано тем, что детерминированные расчёты кон-
струкции на прочность и устойчивость проводится для определённых 
моментов времени, так называемых расчётных случаев. [5-13] 

В качестве критического параметра, характеризующего близость 
конструкции к тому или иному предельному состоянию можно прини-
мать либо разность между несущей способностью R и нагрузкой S, 
либо их отношение. В первом случае вероятность неразрушения рав-
ной вероятности того что R-S>0. Во втором случае критический пара-
метром является коэффициент запаса прочности или коэффициент за-

паса устойчивости 
S
R , а вероятность неразрушения равна вероятности 

того, что 1>
S
R . [14-16] 

Если рассматривать надёжность конструкции, используя в каче-
стве критических параметров разности между несущими способно-
стями элементов и нагрузками, что возможны при предельных состо-
яниях:  

• по прочности 11 SRU −= ; 
• по устойчивости 2 2V R S= − ; 
• по деформациям 33 SRW −= . 

Здесь 1S  – нагрузка, при возрастании которой возможно разрушение 
конструкции в результате потери прочности; 1R  – несущая способ-
ность конструкции по прочности, т.е. разрушающая нагрузка, вызыва-
ющая потерю прочности; 2S  – нагрузка, способная привести к потери 
устойчивости конструкции; 2R  – несущая способность конструкции по 
устойчивости (критическая сила); 3S  – упругая или пластическая де-
формация, способная привести к потере работоспособности конструк-
ции; 3R  – несущая способность конструкции по упругим или пласти-
ческим деформациям. 

Конечно, возможны и другие виды предельных состояний, напри-
мер, предельное состояние по усталостной прочности в случае дей-
ствия на конструкцию циклической нагрузки или длительной прочно-
сти при нахождении конструкции значительный период времени под 
нагрузкой. Однако при оценке квазистатической надёжности кон-
струкций, когда рассматривается надёжность в фиксированный мо-
мент времени основными предельными состояниями являются пере-
численные выше. В общем случае, вероятность неразрушения 
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конструкции есть вероятность отсутствия всех трёх предельных состо-
яний 

( )0,0,0 >>>= WVUверP  

 Для трёх предельных состояний вероятность неразрушения кон-
струкции,  

( ) ( )
0 0 0

0, 0, 0 , , ,P U V W f u w dud dwϑ ϑ
∞ ∞ ∞

> > > = ∫ ∫ ∫  

где ( ), ,f u wϑ  – плотность совместного распределения случайных 
 величин U, V, W. 

Согласно [9], маловероятны случаи нагружения конструкции, ко-
гда все три предельных состояния представляли бы в равной степени 
опасность. Поэтому достаточно ограничиться рассмотрением двух 
возможных предельных состояний, а иногда - только одного. Для слу-
чая двух возможных предельных состояний вероятность неразруше-
ния равна  

( ) ( )
0 0

0, 0 , , ,P U V f u w dudϑ ϑ
∞ ∞

> > = ∫ ∫  

где ( )ϑ,uf  – плотность совместного распределения случайных вели-
чин U и V.  

Как показано в работах [17-19], случайные величины U, V распре-
делены либо по нормальному закону, либо по закону близкому к нор-
мальному. В общем случае их можно считать коррелированными. То-
гда плотность совместного распределения двух случайных величин 
может быть представлена в виде 

( ) ( )
( )( )

2

22

2

1 1, exp
2 12 1

2
.

u

uuu u

u u

u

u mf u
rr

r u m m m

ϑϑ ϑ

ϑ ϑ ϑ

ϑ ϑ

ϑ
σπσ σ

ϑ ϑ
σ σ σ

  − = − −  
− −   

− −  − − +  
  

 

Здесь um , mϑ  – математические ожидания случайных величин; uσ ,

ϑσ −  среднее квадратическое отклонение случайных величин; ϑur  – 
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коэффициент корреляции случайных величин.  
При этом  

1! sRu mmm −= , 

2!2 sR mmm −=ϑ  

111111
2222

sRsRsRu r σσσσσ −+= , 

222222
2222

sRsRsR r σσσσσϑ −+= , 

u
u

u

Kr ϑ
ϑ

ϑσ σ
= , 

1 2 1 2 1 2 1 2 1 2 1 2 2 1 2 1u R R R R s s s s R s R s R s R sK r r r rϑ σ σ σ σ σ σ σ σ= + − − , 

где 
2!21!

,,, sRsR mmmm   – математические ожидания случайных величин 
соответственно; 

2211
,,, sRsR σσσσ   – среднее квадратическое отклонение 

случайных величин; 
121sRr  – коэффициент корреляции случайных вели-

чин  1R , 1S ;
21sRr  – коэффициент корреляции случайных величин  2R , 

2S ; 
21RRr  – коэффициент корреляции случайных величин 1R , 2R ; 

21ssr  – 
коэффициент корреляции случайных величин 1S , 2S ; 

21sRr  – коэффи-
циент корреляции случайных величин 1R , 2S ; 

12sRr  – коэффициент кор-
реляции случайных величин 2R , 1S ; ϑuK  – корреляционный момент 
случайных величин U и V. 

Если обозначить 

u

u Umx
σ
−

= ,  
ϑ

ϑ

σ
Vmy −

= , 

то ( ) ( )∫ ∫
∞− ∞−

=>>
α β

dxdyyxfVUP ,0,0 , где ,
u

um
σ

α = ,
ϑ

ϑ

σ
β m
=  

( ) ( ) 







−
+−

−
−

= 2

22

2 12
2exp

12
1,

ϑ

ϑ

ϑπ u

u

u
r

yxyrx
r

yxf , 

Тогда вероятность ненаступления хотя бы одного предельного со-
стояние (вероятность неразрушения) может быть выражена с помо-
щью табулированных функций ( )xФ , ( )ahT ,  в виде  
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( ) ( ) ( ) ( ) ( )1 10, 0 , , ,
2 2

P U V Ф Ф Т a T bα β α β> > = + − −  

где 
21

u

u

ra
r
ϑ

ϑ

β α

α

−
=

−
, 

21 ϑ

ϑ

β
βα

u

u

r
rb

−

−
=  

Таким образом, для расчёта вероятности неразрушения в случае 
двух предельных состояний, достаточно знать числовые характери-
стики нагрузок и несущих способностей конструкции.  

Если параметры U и V не коррелированы, то вероятность неразру-
шения.  

( ) ( ) ( ) ( ) ( )0, 0 0 0 .P U V P U P V Ф Фα β> > = > > =  

Последнее выражение можно использовать и при наличии корре-
ляции параметров U и V, если надёжность конструкции достаточно ве-
лика ( )( )10,0 ≈>> VUP . В этом случае, согласно [20,21] влияние ко-
эффициента корреляции ϑur  мало. Для одного предельного состояния 
вероятность его ненаступления (вероятность неразрушения) равно 

( ) ( )αФUP => 0 . 

При расчёте надёжности конструкции можно использовать безраз-
мерные параметры:  

s

R

m
m

=η  – коэффициент надёжности;  

R

R
R m

V σ
= –  коэффициент вариации несущей способности;  

s

s
s m

V σ
=  –  коэффициент вариации нагрузки. 

 В случае одного предельного состояние при отсутствии корреля-
ции между несущей способностью конструкции и нагрузкой, величина  

22
sR

sR mm
σσ

α
+

−
= может быть представлена виде 

222

1

sR VV +

−
=

η
ηα . 

Тогда вероятность неразрушения будет функцией трёх перемен-
ных ( ) ( )sR VVpUP ,,0 η=> , что иногда позволяет упростить процесс 
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вычисления надёжности конструкции. 
Для анализа влияния на надёжность конструкции вариации 

нагрузки и несущей способности в рассмотрение вводятся относитель-
ные предельные отклонения: 

• несущей способности 
R

R
R m

∆
=ξ , 

• нагрузки 
s

s
s m

∆
=ξ .  

Здесь R∆ и s∆ предельные отклонения несущей способности и 
нагрузки. Для нормального распределения параметров с учётом пра-
вила «трёх сигм» имеем 

RR σ3=∆ , ss σ3=∆ . 

Результаты численного моделирования. На рис. 1 – 4 представ-
лены зависимости надёжности конструкций от относительных пре-
дельных отклонений нагрузки и несущей способности для различных 
значений коэффициента надёжности η . Как следует из этих графиков 
влияние относительных предельных отклонений на надёжность кон-
струкции снижается при увеличении коэффициента надёжности и от-
носительного предельного отклонения нагрузки Rξ  и уменьшения от-
носительного предельного отклонения несущей способности sξ . 

 

Рис. 1. Зависимость надежности конструкции от относительных отклонений 
нагрузки и несущей способности (коэффициент надежности 1,1)η =  

43 
 



В.М. Дубровин, К.С. Семенов 

 
Рис. 2. Зависимость надежности конструкции от относительных отклонений 

нагрузки и несущей способности (коэффициент надежности 1,2)η =  

 
Рис. 3. Зависимость надежности конструкции от относительных отклонений 

нагрузки и несущей способности (коэффициент надежности 1,3)η =  
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Рис. 4. Зависимость надежности конструкции от относительных отклонений 

нагрузки и несущей способности (коэффициент надежности 1,4)η =  

Предложенный метод может быть использован для оценки надёж-
ности любой другой технической системы, работоспособность кото-
рой зависит от наступления или не наступления нескольких предель-
ных состояний. При этом под несущей способностью системы 
понимается предельный уровень воздействия на систему, при котором 
она не теряет работоспособности (продолжает функционировать). Под 
нагрузкой понимается уровень воздействия внешних факторов, влия-
ющих на работу способность системы.  

Выводы. 1. Предложенный метод позволяет оценить надёжность 
технической системы, работоспособность который определяется не-
сколькими предельными состояниями.  

2. Получены зависимости надёжности системы от относительных 
предельных отклонений нагрузки и несущей способности для различ-
ных значений коэффициенты надёжности.  

3. Влияние относительных предельных отклонений на надёжность 
системы снижается при увеличении коэффициента надёжности и от-
носительного предельного отклонений нагрузки и уменьшения отно-
сительного предельного отклонения несущей способности. 
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We consider the technical system, comprising a plurality of structural elements operating 
under the influence of a complex external loads. For such a system, we proposed a method 
for calculating the reliability criterion for the occurrence of one or more of the limit states 
design elements. 
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