539.3 Modeling of loads on a composite cylindrical shell with an elastic filler

Dubrovin V. M. (Bauman Moscow State Technical University), Semyonov K. S. (Bauman Moscow State Technical University/RSC Energia)

SHELL, ELASTIC FILLER, COMPOSITE SHELL, BENDING MOMENT, COEFFICIENT OF ELASTIC COMPLIANCE, PLANE PROBLEM OF THE THEORY OF ELASTICITY


doi: 10.18698/2309-3684-2019-1-2742


A method for calculating the loads on a composite cylindrical shell, consisting of external and internal shells connected by a system of elastic transverse supports, is proposed. Between the shells is an elastic filler. The method takes into account the geometry and mechanical characteristics of the shells, the elastic characteristics of the transverse supports and the physico-mechanical properties of the material of the elastic aggregate. In solving the problem, it is assumed that the material of the elastic aggregate satisfies the basic relations of the theory of elasticity, and the elastic characteristics of the aggregate under dynamic loading correspond to the characteristics under static loading. This allows you to use the results to solve problems in both static and dynamic formulations. By choosing a different combination of characteristics of the shells and the elastic filler, it is possible to provide the most favorable loading conditions for both the inner and outer shells, depending on the statement of the problem. As an example, the loads on the inner shell were studied depending on the characteristics of the outer shell and the specific stiffness of the elastic filler. Similarly, estimates of the loads acting on the outer shell can be obtained.


[1] Sukhinin S.N. Prikladnye zadachi ustoychivosti mnogosloynykh kompozitnykh obolochek [Applied stability problems of multilayer composite shells]. Moscow, FIZMATLIT Publ., 2010, 248 p.
[2] Solomonov Yu.S., Georgievskiy V.P., Nedbay A.Ya., Andryushin V.A. Metody rascheta tsilindricheskikh obolochek iz kompozitsionnykh materialov [Methods for calculating cylindrical shells of composite materials]. Moscow, FIZMATLIT Publ., 2009, 264 p.
[3] Dimitrienko Yu.I. Nelineynaya mekhanika sploshnoy sredy [Nonlinear continuum mechanics]. Moscow, Fizmatlit Publ., 2009, 624 p.
[4] Dimitrienko Yu.I. Universalnye zakony mekhaniki i elektrodinamiki sploshnoy sredy [Universal laws of mechanics and electrodynamics of continuum]. Vol. 2. Moscow, BMSTU Publ., 2011, 559 p.
[5] Okopnyy Yu.A., Rodin V.P., Charkov I.P. Mekhanika materialov i konstruktsiy [Mechanics of materials and structures]. Moscow, Mashinostroenie Publ., 2001, 407 p.
[6] Butina T.A., Dubrovin V.M. Inzhenernyi zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovations, 2014, no. 3 (27). Available at: http://www.engjournal.ru/catalog/mathmodel/solid/1231.html
[7] Bakulin V.N. Dinamicheskie zadachi nelineynoy teorii mnogosloynykh obolochek [Dynamic problems of non-linear theory of multilayered shells]. Moscow, Nauka Publ., 1998, 462 p.
[8] Bushuev A.Yu., Yakovlev D.O. Vestnik MGTU im. N.E. Baumana. Ser Estestven-nye nauki. Spets. vyp. “Matematicheskoe modelirovanie” — Herald of the Bau-man Moscow State Technical University. Series Natural Sciences. Special edition on mathematical modelling, 2011, pp. 66–69.
[9] Dimitrienko Yu.I., Gubareva E.A., Pichugina A.E. Matematicheskoe modeliro-vanie i chislennye metody — Mathematical Modeling and Computational Methods, 2018, no. 3, pp. 109–126.
[10] Dubrovin V.M., Semenov K.S. Matematicheskoe modelirovanie i chislennye metody — Mathematical Modeling and Computational Methods, 2017, no. 3, pp. 38–48.
[11] Zhilin P.A. Osnovy teorii obolochek [Foundations of shell theory]. St. Petersburg, Peter the Great St. Petersburg Polytechnic University Publ., 2006, 306 p.
[12] Frolov K.V. Izbrannye trudy. V 2 tomakh. Tom 2. Mashinovedenie i mashi-nostroenie [Selected works. In 2 vol. Vol. 2. Engineering and machine building]. Moscow, Nauka Publ., 2007, 522 p.
[13] Golushko S.K., Nemirovskiy Yu.V. Pryamye i obratnye zadachi mekhaniki uprugikh kompozitnykh plastin i obolochek vrashcheniya [Direct and inverse problems of mechanics of elastic composite plates and rotary shells]. Moscow, FIZMATLIT Publ., 2008, 432 p.
[14] Dubrovin V.M., Butina T.A. Inzhenernyy zhurnal: nauka i innovatsii — Engineering Journal: Science and Innovation, 2013, no. 9 (21). DOI: 10.18698/2308-6033-2013-9-957
[15] Butina T.A., Dubrovin V.M. Vestnik MGTU im. N.E. Baumana, Ser. Estestvennye nauki — Herald of the Bauman Moscow State Technical University. Ser. Natural Sciences, 2012, special iss., no. 3 “Mathematical modeling”, pp. 127–133.


Дубровин В.М., Семёнов К.С. Моделирование нагрузок на составную цилин-дрическую оболочку с упругим заполнителем. Математическое моделирование и численные методы, 2019, № 1, с. 27–42.



Download article

Количество скачиваний: 76