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Моделирование нагрузок на составную  

цилиндрическую оболочку с упругим заполнителем 

© В.М. Дубровин, К.С. Семенов 

МГТУ им. Н.Э. Баумана, Москва, 105005, Россия 

 

Предложен метод расчёта нагрузок на составную цилиндрическую оболочку, со-

стоящую из внешней и внутренней оболочек, соединенных системой упругих попе-

речных опор. Между оболочками находится упругий заполнитель. Метод учиты-

вает геометрию и механические характеристики оболочек, упругие характери-

стики поперечных опор и физико-механические свойства материала упругого запол-

нителя. При решении задачи предполагается, что материал упругого заполнителя 

удовлетворяет основным соотношениям теории упругости, а упругие характери-

стики заполнителя при динамическом нагружении соответствуют характеристи-

кам при статическом нагружении. Это позволяет использовать полученные резуль-

таты для решения задач как в статической, так и динамической постановке. Вы-

бором различного сочетания характеристик оболочек и упругого заполнителя 

можно обеспечить наиболее благоприятные условия нагружения как внутренней, 

так и внешней оболочек в зависимости от постановки задачи. В качестве примера 

исследовались нагрузки на внутреннюю оболочку в зависимости от характеристик 

внешней оболочки и погонной жесткости упругого заполнителя. Аналогично могут 

быть получены оценки нагрузок, действующих на внешнюю оболочку 

 

Ключевые слова: внешняя оболочка, внутренняя оболочка, упругий заполнитель, со-

ставная оболочка, изгибающий момент, коэффициент упругой податливости, плос-

кая задача теории упругости 

 

Введение. Рассматривается составная цилиндрическая оболочка, 

то есть конструкция, состоящая из внешней и внутренней оболочек, 

между которыми располагается упругий слой (упругий заполнитель). 

Кроме того, оболочки соединены системой упругих поперечных свя-

зей. Такие оболочки находят широкое применение в магистральных 

трубопроводах, железнодорожном транспорте, авиационной технике, 

ракетостроении. Конструктивная схема составной оболочки с запол-

нителем представлена на рис. 1. На внешнюю оболочку действует по-

перечная нагрузка. Посредством поперечных упругих опор и упругого 

заполнителя эти нагрузки передаются на внутреннюю оболочку. Уро-

вень и динамика этого воздействия определяются как параметрами 

воздействия, так и характеристиками упругого основания. Чаще всего 

такая конструкция составной оболочки призвана обеспечить снижение 

нагрузок на внутреннюю оболочку за счёт их передачи на внешнюю 

оболочку. Поэтому в настоящей работе оценивается возможность сни-

жения нагрузок на внутреннюю оболочку при заданном уровне воз-

действия на внешнюю оболочку.  
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Рис. 1. Конструктивная схема составной оболочки с упругим заполнителем: 

1 — внутренняя оболочка; 2 — внешняя оболочка; 3 — упругий заполнитель;                
4 — опора 

 

Математическая модель упругого заполнителя. При решении 

задачи предполагается, что упругий заполнитель есть слой упругого 

материала толщиной H . Как показано в работах [1–5] для определе-

ния поперечных нагрузок на внутреннюю и внешнюю оболочки, явля-

ющихся частями составной оболочки при использовании упругого     

заполнителя, необходимо знать упругие характеристики этого запол-

нителя. Этими характеристиками являются коэффициенты упругой 

податливости (коэффициент постели) заполнителя. В настоящей ра-

боте принята модель упругого заполнителя, предложенная в работах 

[6–8]. Эта модель способна распределять нагрузку, т.е. способна 

вследствие связности работать и за пределами приложения нагрузки. 

Схематически она может быть представлена как система упругих эле-

ментарных столбцов (пружин), между которыми существуют внутрен-

ние связи, вовлекающие в работу соседние пружины. Схема такого 

упругого заполнителя представлена на рис. 2. В основу модели поло-

жена гипотеза о том, что продольные перемещения в упругом запол-

нителе отсутствуют. В этом случае рассматривается модель с двумя 

упругими характеристиками, определяемую двумя коэффициентами 

упругой податливости заполнителя k , t : k  — коэффициент опреде-

ляет работу упругого заполнителя на сжатие; t  — коэффициент опре-

деляет работу упругого заполнителя на сдвиг. 

Для определения этих коэффициентов используется метод пере-

мещений. Для этого рассматривается равновесие элемента упругого 

заполнителя шириной   и единичной длины. Это позволяет свести за-

дачу к плоской задаче теории упругости. Причем для рассматривае-

мого элемента продольные смещения  ,u x y , поперечные перемеще-

ния  ,x y . Перемещения считаются положительными, если их 
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направления совпадают с направлениями координатных осей. 

 

Рис. 2. Схема работы упругого заполнителя 

 

В общем случае плоской задачи теории упругости напряжения 

связаны с деформацией следующими соотношениями: 
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 где 
х . , y  — нормальные направления по осям x  и y ; хy  , yх  — 

касательные напряжения; E ,   — модуль упругости и коэффициент 

Пуассона материала заполнителя; 1 , 2  — относительные деформа-

ции по осям x  и y ;   — деформация сдвига. 

В свою очередь деформации упругого тела определяются в виде 
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Для определения напряженно-деформированного состояния выделен-

ного элемента перемещения  ,u x y  и  ,x y  представляются в виде 

конечных разложений 
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В соотношениях (2) функции  xUi ,  xVk  считаются неизвестными, 

функции  yi ,  yk  определяются из физических соображений. 

Причем размерность функций  xUi ,  xVk  принимаются равной раз-

мерности исходных функций    ,u x y ,  ,x y , в то время как функции 

 yi ,  yk  являются безразмерными. общем случае уравнения рав-

новесия имеют вид 
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где dydF   — дифференциал площади поперечного сечения выде-

ленного элемента;  yxp , ,  yxq ,  — компоненты нагрузки в направ-

лении осей x  и y . 

Напряжения в соответствии с формулами (1) при представлении 

перемещений в виде (2) запишутся следующим образом 
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Учитывая соотношения (4), из уравнений равновесия (3) можно полу-

чить m n  обыкновенных дифференциальных уравнений относи-

тельно функций  xUi ,  xVk  вида 
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В формулах (5) обозначены: 
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Физический смысл этих коэффициентов может быть интерпретирован 

как своего рода обобщенные моменты инерции. 

При заданных компонентах нагрузки  yxp , ,  yxq ,  
jp и hq  опре-

деляется как обобщенные продольные и поперечные (отнесенные к 

единице длины) силы по формулам 

    , , , .j j h hp p x y dy q q x y dy      

Система дифференциальных уравнений (5) позволяет определить 

напряженно-деформированное состояние заполнителя. При ограни-

ченном числе членов в разложении (2) решение системы (5) можно 

рассматривать как приближенное к точному решению. Выбирая для 

функций i , k различные выражения, можно получить ряд моделей 

упругого заполнителя, приближенных с точки зрения теории упруго-

сти, но достаточно точных с точки зрения практических задач, кроме 

того, увеличивая количество членов в разложении (2) можно увели-

чить точность решения задачи. 

В рассматриваемом случае задача может быть значительно упро-

щена в связи с тем, что основную роль в работе заполнителя играют 

поперечные перемещения. Поэтому продольными перемещениями 

можно пренебречь по сравнению с поперечными, кроме того из усло-

вия задачи следует, что можно пренебречь продольными усилиями по 

сравнению с поперечными. Тогда будем иметь 
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С учетом последних соотношений получим 
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Уравнения равновесия (3) будут иметь вид 
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В том случае, если упругий заполнитель представляет собой слой 

небольшой мощности  RH  , а поперечные перемещения по по-

дошве этого слоя отсутствуют, можно предположить 
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В этом случае система (7) сведется к уравнению 
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Модель упругого заполнителя, описывается уравнением (9) есть 

модель с двумя упругими характеристиками. Если рассматривать слу-

чай RH  , то уравнение (9) может быть представлено в виде 

 1 12 0,tV kV q      (10) 

где 
2
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1 


Es
k  — коэффициент, определяющий работу упругого за-

полнителя на сжатие; 
 


14

11Er
t  — коэффициент, определяющий ра-

боту упруго заполнителя на сдвиг. 

Полученные зависимости для коэффициентов упругой податливо-

сти заполнителя применительно к выделенному элементу могут быть 

преобразованы для случая составной цилиндрической оболочки. Для 

получения этих коэффициентов рассмотрим кольцо единичной ши-

рины, выделенное сечениями, перпендикулярными оси оболочки. 

Схема нагружения кольца при поступательном движении в его плос-

кости представлена на рис. 3. Перемещение центра кольца обозначим 

a . Тогда деформация элементарного элемента, выделенного из упру-

гого заполнителя и расположенного под углом   к направлению дви-

жения центра кольца, может быть записано в виде 

 cos .a a    

Проекция этого перемещения на направление центра кольца равна 

Таким образом, если привести рассматриваемое кольцо к эквива-

лентной ему с точки зрения площади опирания плоской пластинки ши-

риной 0 , то необходимо потребовать выполнения условия 
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Тогда, согласно (9), для коэффициентов упругой податливости запол-

нителя будут справедливы формулы: 
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Рис. 3. Схема нагружения сечения внутренней оболочки 

 

Рассматривая случай малой толщины упругого заполнителя 

RH   и принимая функцию  y1  в виде (8), коэффициенты упру-

гой податливости будут равны  
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В соответствии с формулой (11) оценивались коэффициенты k  и t  для 

различных сочетаний радиуса внутренней оболочки и толщины упру-

гого заполнителя. Расчёты проводились для некоторых материалов, 

которые согласно [9–11] которые могут быть использованы в качестве 

возможного упругого заполнителя. Результаты расчёта представлены 

в табл. 1. 

Таблица 1 

Значения коэффициентов упругой податливости различных типов запол-

нителя 

Тип упругого заполни-
теля 

E   

2
кг

см
 

150 ,

5
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H см




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5
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
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


 

k  t  k  t  k  t  

2
Т

м
 Т  2

Т
м

 Т  2
Т

м
 Т  

Пенопласт на основе по-

ливинилхлорида 

8·103 

4,5·104 

1,5·105 

106 

9,9·10 

1,95·102 

2,8·105 

1,89·106 

2,9·10 

1,95·102 

1,57·105 

1,05·106 

6,55·10 

4,35·102 

Пенопласт на основе по-
листирола 

4·103 
4·104 

0,75·105 
0,85·106 

4,95·10 
5,75·102 

1,42·105 
1,59·106 

1,47·10 
1,71·102 

0,78·105 
0,88·106 

3,28·10 
3,8·102 

Пенопласт на основе фе-

нольно-формальдегид-
ной смолы 

2,6·103 

4·104 

0,49·105 

0,85·106 

3,28·10 

5,78·102 

0,92·105 

1,59·106 

1·10 

1,77·102 

0,57·105 

0,88·106 

2,18·10 

3,8·102 

Пенопласт типа поли-

уретана 

5,3·103 

2,8·104 

0,88·105 

0,62·106 

6,6·10 

4,1·102 

1,87·105 

1,17·106 

1,95·10 

1,22·102 

1,04·105 

0,65·106 

4,35·10 

2,72·102 



В.М. Дубровин, К.С. Семенов 

34 

Как следует из таблицы значения коэффициентов упругой подат-

ливости заполнителя могут меняться в достаточно широком диапа-

зоне, что позволяет в каждом конкретном случае выбрать   xu  опти-

мальное с точки зрения нагружения оболочки значения. 

Математическая модель нагрузок на составную оболочку с 

упругим заполнителем. В основу модели положены метод начальных 

параметров [12–15]. Для этого оболочка разбивается на участки с по-

стоянным по длине массовыми и жесткостными характеристиками. 

Выделяются участки малой длины, на которых имеет место сосредо-

точенные нагрузки-реакции упругих связей между оболочками. Вели-

чина жесткости упругой связи между оболочками определяется как 

произведение полной жесткости заполнителя, характеризующейся ко-

эффициентами k  и t , на длину участка. В этом случае, если полная 

жесткость заполнителя меняется по длине оболочки, жесткость упру-

гой опоры, приведенная к сечению, расположенному на стыке  1i  -

го и i -го участка будет равна 

 

 

 

1 1

1 1

1
,

2

1
,

2

i

i

y i i i i

i i i i

c k l k l

c t l t l

 

 

   

   

  

где ,
iyc  

i
c  — линейна угловая жесткость упругой связи между обо-

лочками;  il  — длина участков, на которые разбивается оболочка. 

Если рассматривать заполнитель с постоянными физико-механиче-

скими свойствами, то коэффициенты упругой податливости k , t  яв-

ляются постоянными величинами и тогда 

 

 

 

1

1

,
2

.
2

i

i

y i i

i i

k
c l l

l
c l l





  

  

  

На участке расположения дискретных упругих связей между оболоч-

ками жесткость этих связей суммируется 
iyc и 

i
c . 

Для принятой расчетной схемы управления равновесия элемента 

оболочки, выделенного сечения перпендикулярными оси оболочки 

имеют вид 

 
2 3

,
2 6

i i
iH i i i i i i

i i i i

l l
y y l M Q y

E I E I
        
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2

1

1

,
2

,

,

i i
iH i i i i

i i i i

i i i i i

i i

l l
M Q

E I E I

M M l Q M

Q Q Q

  





    

   

  

 

 
3 4

,
4! 5!i i

i i i
i y

i i

l l G
y n n

E J


  
   

 
  (12) 

 

 

2 3

2

* *

0

1 1 1

0

1

,
3! 4!

,
2! 4!

,
2!

, .

i i

i i

i i

i i

i i
i y

i i

i i
i y

i
i y

n n n

i i i i

i i i
y n

i

i

l l G i
n n

E I

l l
M n n G i

l
Q n n G i

Q M Q x x

n n
I g

G

















  



  
    

 

 
     

 

 
     

 

 

 



  



  

Здесь iy , i , iM , iQ  — прогиб, угол поворота, изгибающий момент и 

перерезывающая сила в i -ом сечении оболочки; 
iyn  — поперечная пе-

регрузка в i -ом сечении; 
i

n  — угловая перегрузка в i -ом сечении; *

iM

, *

iQ  — изгибающий момент и перерезывающая сила, действующие на 

внешнюю оболочку; il , iG  — длина и масса i -ого участка; ii IE  — 

изгибающая жесткость i -ого участка; 0I  — момент инерции состав-

ной оболочки; ix , 0x — координаты i -ого сечения и центра масс со-

ставной оболочки. 

Уравнения (12) справедливы как для внутренней, так и внешней 

оболочек. 

В векторно-матричной форме уравнения (12) имеют вид 

 1 ,i iA     

где  11 kikikikipipipipii QMyQMy   — матрица параметров в i -м се-

чении;                 11 111111111   ikikikikipipipipi QMyQMy   — мат-

рица параметров в  1i -м сечении; 
iA — передаточная матрица               

i -ого сечения, имеющая вид 
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   

   

   

   

2 3

2
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2

1
2 6

0 1
2

0 0 1 0

0 0 0 1

0 0 0 0 1
.

1
2 6
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pi pi
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i
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i

l l
l y
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l M

Q

A
l l

l y
EI EI

l l

EI EI

l M

Q
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  

 
 

  
 
 
  
 

 
 
 
  

  
 
 

  
 
 
  
 

 
 
 

 

 

При этом индексы p  и k  относятся соответственно к внутренней 

и внешней оболочке. 

С учетом коэффициентов упругой податливости заполнителя и 

наличия упругих связей между оболочками будем иметь 

 

 

 

 

 

*

*

*

*

,

,

,

,

pi yi pi ki pipi

ki yi ki pi kiki

pipi i pi ki pi

kiki i ki pi ki

Q Q C y y Q

Q Q C y y Q

M M C M

M M C M





   

   

    

    

  (13) 

где *

piQ , *

kiQ , *

piM , *

kiM  — внешние сосредоточенные силы и моменты, 

действующие на внутреннюю и внешнюю оболочки. 

Черта сверху обозначает параметры слева от сосредоточенной 

нагрузки (отсчёт идет от сечения 0x ). 

В векторно-матричной форме уравнения (13) имеют вид 

 ,ii iB    

где iB  — матрица сосредоточенных нагрузок, определяемая по фор-

муле 
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*

*

*

*

1 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0

0 0 1 0 0 0 0

0 0 0 0 1 0 0 0 0 0
.

0 0 0 0 0 1 0 0 0 0

0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 1 0

0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1

yi pi yi

yi pi yi

i

i i ki

yi yi ki

C M C

C Q C

B

C C M

C C Q

 

 
 
 
 
 

  
 

  
 
 
 

 
 
 
 
 
 

  

С помощью передаточных матриц и матриц сосредоточенных нагру-

зок может быть получено векторно-матричное уравнение, связываю-

щее параметры нагрузок конечного и начального сечений составной 

оболочки. 

 1 1 2 2 0 0

1

... .
n

n n n i i

i

B A B A B A B A  


    (14) 

Матрица начальных параметров определяется на основании гра-

ничных условий на концах оболочки, исходя из условий их закрепле-

ния. Таким образом, уравнение (14) позволяет определить изгибаю-

щие моменты и перерезывающие силы в любом сечении составной 

оболочки. 

Алгоритм реализации предложенного метода расчета нагру-

зок. Предложенный метод расчета нагрузок на составную оболочку с 

упругим заполнителем включает в себя следующие этапы: представ-

ление оболочки в виде набора конечного числа участков с постоян-

ными по длине упругими и массовыми характеристиками; вычисление 

коэффициентов упругой податливости заполнителя; вычисление ли-

нейных и угловых связей между оболочками, приведенных к сече-

ниям, расположенным на стыке участков; вычисление передаточных 

матриц на границах участков; вычисление матриц сосредоточенных 

нагрузок на границах участков; вычисление нагрузок (перерезываю-

щих сил и изгибающих моментов), действующих как на внутреннюю, 

так и на внешнюю оболочки. 

В качестве примера реализации предложенного алгоритма на рис. 

4 представлены результаты расчёта изгибающих моментов, действую-

щих на внутреннюю оболочку для различных значений упругих связей 

между оболочками и различных значений изгибных жёсткостей внеш-

ней оболочки.  
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a 

  
б в 

Рис. 4. Изменение изгибающего момента по длине внутренней оболочки для 

различных значений изгибной жесткости внешней оболочки при погонной жестко-

сти упругого заполнителя (а, б, в): 

1 — 00, k kC I I   ; 2 — 
2 010 , k kC T I I   ; 3 — 

00, 5k kC I I   ;  4 —

00, 10k kC I I   ; 

а — 4 210 Т м ; б — 5 210 Т м ; в — 5 22 10 Т м  
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На рис.5 представлены результаты расчёта максимального значе-

ния изгибающего момента в сечениях внутренней оболочки в зависи-

мости от изгибной жёсткости внешней оболочки для некоторых зна-

чений погонной жёсткости упругого заполнителя. 

 

Рис. 5. Зависимость максимального изгибающего момента  

внутренней оболочки от изгибной жесткости внешней  

оболочки для различных значений погонной жесткости  

упругого заполнителя: 

1 — 210yC T м ; 2 — 52,5 10yC T м   

Как видно из представленных графиков соответствующим выбо-

рам характеристик упругого заполнителя и изгибной жёсткости внеш-

ней оболочки можно значительно снизить изгибающий момент на 

внутреннюю оболочку. Кроме того, расчёты показали, что влияние уг-

ловой жесткости на изгибающий момент для реальных физико-меха-

нических характеристик упругого заполнителя незначительно и ею 

можно пренебречь. Это означает, что при практических расчётах учи-

тывать только коэффициент упругой податливости, определяющий ра-

боту упругого заполнителя на сжатие.  
Выводы. 1. Предложенный метод расчёта нагрузок на составную 

цилиндрическую оболочку позволяет учитывать влияние упругого за-

полнителя на величину нагрузок, действующих как на внутреннюю, 

так и на внешнюю оболочку. 2. Упругий заполнитель не только влияет 

на величину действующей нагрузки, но и одновременно перераспре-

деляет её по длине оболочки, что даёт возможность выбором характе-

ристик заполнителя обеспечить равнопрочность оболочки по всей её 

длине. 3. Изгибная жёсткость внешней оболочки существенно влияет 

на величину нагрузок, действующих на внутреннюю оболочку. Это 
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значит выбором параметров внешней оболочки можно обеспечить оп-

тимальные условия работы внутренней оболочки. 4. Выбором харак-

теристик элементов составной оболочки можно существенно снизить 

нагрузки, действующие как на внутреннюю, так и на внешнюю обо-

лочки. 
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Modeling of loads on a composite  

cylindrical shell with an elastic filler 
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A method for calculating the loads on a composite cylindrical shell, consisting of external 

and internal shells connected by a system of elastic transverse supports, is proposed. Be-

tween the shells is an elastic filler. The method takes into account the geometry and me-

chanical characteristics of the shells, the elastic characteristics of the transverse supports 

and the physico-mechanical properties of the material of the elastic aggregate. In solving 

the problem, it is assumed that the material of the elastic aggregate satisfies the basic 

relations of the theory of elasticity, and the elastic characteristics of the aggregate under 

dynamic loading correspond to the characteristics under static loading. This allows you to 

use the results to solve problems in both static and dynamic formulations. By choosing a 

different combination of characteristics of the shells and the elastic filler, it is possible to 

provide the most favorable loading conditions for both the inner and outer shells, depend-

ing on the statement of the problem. As an example, the loads on the inner shell were stud-

ied depending on the characteristics of the outer shell and the specific stiffness of the elastic 

filler. Similarly, estimates of the loads acting on the outer shell can be obtained. 

 

Keywords: shell, elastic filler, composite shell, bending moment, coefficient of elastic com-

pliance, plane problem of the theory of elasticity 
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