Татьяна Юрьевна Мозжорина (МГТУ им.Н.Э.Баумана) :


Статьи:

629.735.33.016+621.45.015 Моделирование влияния атмосферных условий на результаты оптимизации программы полета дозвукового пассажирского самолета

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-7488


Исследовано влияние атмосферных условий, характерных для различных климатических зон, на результаты оптимизации программы полета пассажирского дальнемагистрального самолета. Моделирование полета и характеристик силовой установки основано на современных традиционных подходах, используемых в задачах подобного рода. Оптимизация участка полета разгона — набора высоты проводится при минимизации количества топлива, затраченного на этот участок полета. Оптимизация крейсерского участка полета проводится при учете эксплуатационных ограничений гражданской авиации. При моделировании полета используется встроенная модель двухконтурного турбореактивного двигателя, позволяющая рассчитать характеристики силовой установки при любых режимах полета. Полет дозвукового самолета рассмотрен в одной вертикальной плоскости. Расчеты проведены для шести стандартов изменения температуры воздуха по высоте (в зависимости от климатической зоны). Учтена возможность изменения атмосферного давления у поверхности Земли. Оценено влияние атмосферных условий на результаты оптимизации программы полета.


Мозжорина Т. Ю., Губарева Е. А. Моделирование влияния атмосферных условий на результаты оптимизации программы полета дозвукового пассажирского самолета. Математическое моделирование и численные методы, 2014, №3 (3), c. 74-88



519.6 Моделирование влияния времени схода с орбиты Земли на оптимальное управление перелетом малоразмерного космического аппарата на Венеру

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Закуражная А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-2-8599


В данной работе рассматривается оптимизация управления перелетом малого космического аппарата (КА) на ионных двигателях на орбиту Венеры с учетом притяжения Земли и времени схода с геостационарной орбиты. При решении задачи были приняты следующие допущения: орбиты планет являются круговыми, лежащими в одной плоскости. Подробное рассмотрение влияния Венеры при приближении к орбите планеты не рассматривалось. Задача решается при помощи принципа максимума Понтрягина численным методом пристрелки. Моделирование движения КА было разбито на 3 этапа: разгон КА до скорости, позволяющей преодолеть притяжение Земли с помощью кратковременной работы реактивного двигателя, оптимизация управления вблизи Земли при расстоянии КА до Земли не более 950 000 км и на основной межорбитальный перелет между планетами. Алгоритм решения задачи реализован на языке программирования С++. Получено оптимальное управление углом действия вектора тяги. Анализ полученных результатов показал, что при минимизации времени достижения орбиты Венеры помимо существенного влияния на критерий эффективности наиболее протяженного межорбитального участка перелета принципиально важным является момент начала старта (схода с Земной орбиты).


Мозжорина Т.Ю., Закуражная А.А. Моделирование влияния времени схода с орбиты Земли на оптимальное управление перелетом малоразмерного КА на Венеру. Математическое моделирование и численные методы, 2024, № 2, с. 88–99.



519.6 Моделирование и оптимизация перелета спутников малой массы с Земной орбиты на орбиту Марса с помощью ионных двигателей

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Чуванова Л. О. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-5467


В данной работе рассматривается оптимизация перелета спутника малой массы с Земной орбиты на орбиту Марса с использованием ионных двигателей. Ионный двигатель позволяет минимизировать расход топлива и разогнать космический аппарат до довольно высоких скоростей вдали от планет солнечной системы. Рассмотрению подлежит гелиоцентрический участок полета. Ставится задача минимизации времени перелета. В работе приняты следующие допущения: орбиты Земли и Марса являются круговыми и лежащими в одной плоскости. В качестве управления выбирается угол между тангенциальной скоростью космического аппарата в гелиоцентрической системе и направлением действия тяги. При составлении алгоритма оптимизации использован принцип максимума Понтрягина, который приводит задачу оптимизации функционала к краевой задаче для системы обыкновенных дифференциальных уравнений. Решение краевой задачи найдено одним из численных методов — методом пристрелки, дающим наиболее точные результаты. Проведен анализ полученных результатов и проведено сравнение с данными, полученными ранее в подобных расчетах зарубежными авторами другим численным методом решения. Делается вывод о работоспособности метода пристрелки при решении подобных задач.


Мозжорина Т.Ю., Чуванова Л.О. Моделирование и оптимизация перелета спутников малой массы с Земной орбиты на орбиту Марса с помощью ионных двигателей. Математическое моделирование и численные методы, 2021, № 2, с. 54–67.



519.6 Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Рахманкулов Д. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-7487


В данной работе рассматривается оптимизация перелета спутника малой массы с орбиты Земли на орбиту Марса под солнечным парусом. Оптимизация управления углом установки солнечного паруса проводится с использованием принципа максимума Понтрягина при минимизации времени перелета. В отличие от предшествующих работ на эту тему решение краевой задачи, к решению которой сводится принцип максимума, получено методом пристрелки. Программа расчета написана на языке программирования С++. Несмотря на вычислительные сложности, возникающие при использовании метода пристрелки, удалось добиться хорошей сходимости метода Ньютона, лежащего в основе алгоритма. Проведен анализ точности полученных результатов и показана возможность применения метода пристрелки при решении подобных задач. Проведено сравнение с данными ранее опубликованных работ. Несмотря на некоторые допущения, использованные при разработке алгоритма расчета, работа имеет свою ценность в плане оценки возможности использования метода пристрелки, дающего наиболее точные численные результаты оптимизации.


Мозжорина Т.Ю., Рахманкулов Д.А. Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом. Математическое моделирование и численные методы, 2021, № 3, с. 74–87.



519.6 Моделирование и оптимизация управления полетом космического аппарата с орбиты Земли на орбиту Венеры с помощью ионных двигателей

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Закуражная А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-88101


В данной работе рассматривается оптимизация перелета космического аппарата с Земной орбиты на орбиту Венеры с помощью ионных двигателей. Первый полет к планете состоялся в 1961 году советской автоматической межпланетной станцией «Венера-1», которая прошла в 100 000 километрах от Венеры. Кроме этого, в 1962 году был совершен полет американской станцией «Маринер-2». Самый последний корабль, запущенный к планете, был «Венера Экспресс» Европейского космического агентства в 2005 году, который долетел до Венеры за 153 дня. При решении текущей задачи были приняты следующие допущения: рассматривается межорбитальный перелет без учета притяжения планет, а орбиты планет считаются круговыми и лежащими в одной плоскости. В качестве управления был выбран угол между касательной скоростью космического аппарата и направлением тяги. Оптимизация управления проводилась с использованием принципа максимума Понтрягина. Полученная краевая задача для системы обыкновенных дифференциальных уравнений решалась численным методом — методом пристрелки. Для решения систем нелинейных алгебраических уравнений использовался метод Ньютона. Программа расчета была написана с использованием языка программирования С++. В результате работы удалось минимизировать время перелета между орбитами, таким образом была показана работоспособность метода пристрелки для решения задач оптимизации


Мозжорина Т.Ю., Закуражная Д.А. Моделирование и оптимизация управления полетом космического аппарата с орбиты Земли на орбиту Венеры с помощью ионных двигателей. Математическое моделирование и численные методы, 2022, № 2, с. 90–103



519.6 Моделирование и синтез оптимального управления вертикальной посадкой возвращаемых космических модулей

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Осипов В. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2020-2-8194


В данной работе рассматривается один из возможных алгоритмов обратной связи при вертикальной посадке возвращаемой первой ступени космического аппарата для ее повторного использования в дальнейшем. Предлагается использовать для поправки тяги не двигатели коррекции, а основной двигатель силовой установки космического аппарата, который возможно дросселировать до 60% от максимального значения тяги. Проводится численный эксперимент методом Монте-Карло для оценки работоспособности предложенного алгоритма. Под мягкой посадкой понимается приземление с нулевой или не превышающей нескольких метров в секунду скоростью. Исследованию подлежит последний участок вертикального приземления. Оптимальным программным управлением в данной постановке задачи с точки зрения минимальных затрат топлива является свободное падение, затем включение двигателя на полную мощность до момента приземления. Предполагается возможное случайное отклонение таких параметров от расчетных значений, как: скорость и масса возвращаемого модуля космического аппарата на высоте 2000 м, удельный импульс, а также плотность воздуха и коэффициент аэродинамического сопротивления. Предполагается, что распределены эти случайные величины по нормальному закону, независимы и их отклонения от расчетных значений не превышают 1% по импульсу двигателя и 5% по всем остальным переменным. Скорость приземления при этом – случайная величина, для которой вычисляются параметры распределения. Проводится анализ полученных результатов расчета.


Мозжорина Т.Ю., Осипов В.В. Моделирование и синтез оптимального управления вертикальной посадкой возвращаемых космических модулей. Математическое моделирование и численные методы. 2020. № 2. с. 81–94.



537.876.4:517.958 Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения

Апельцин В. Ф. (МГТУ им.Н.Э.Баумана), Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-327


Рассмотрена двумерная краевая задача о прохождении плоской электромагнитной волны через периодическую слоистую среду, имеющую структуру одномерного фотонного кристалла. Структура имеет конечное число плоскопараллельных слоев, в которой каждая ячейка периодичности состоит из двух слоев с разными действительными значениями постоянной диэлектрической проницаемости и разными толщинами. Показано, что при некотором дополнительном условии, связывающем угол падения плоской волны, толщины слоев, частоту и диэлектрические проницаемости слоев, задача решается до конца в явном виде и приводит к простым выражениям для отраженного от структуры и прошедшего сквозь нее волновых полей. При этом в случае Н-поляризованного поля, в отличие от случая Е-поляризации, свойства данной среды зависят от отношения толщин слоев, умноженных на их диэлектрические проницаемости (при Е-поляризации — только от отношения толщин). В результате фотонный кристалл в зависимости от частоты поля может вести себя как идеально отражающая структура при тех же отношениях толщин слоев, при которых в случае Е-поляризации он становится волноведущей структурой, и наоборот. Произведено сравнение численных расчетов со случаем Е-поляризации.


Апельцин В. Ф., Мозжорина Т. Ю. Свойства одномерного фотонного кристалла как отражающей или волноведущей структуры в случае H-поляризованного возбуждения . Математическое моделирование и численные методы, 2014, №2 (2), c. 3-27



519.62+539.21 Численное моделирование перестройки наноструктуры сплавов методами молекулярной динамики

Краснов И. К. (МГТУ им.Н.Э.Баумана), Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Баланин А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-4-316


Представлена математическая модель динамики перестройки структуры наночастиц сплавов после мгновенного термического воздействия (нагрева или охлаждения). Модель основана на использовании метода молекулярной динамики многокомпонентных сплавов с атомными потенциалами Леннарда-Джонса и Морзе, а также начальных условий мгновенного расширения или сжатия правильной кристаллической структуры наночастицы сплава. Численно исследованы закономерности перестройки начально правильной атомной структуры наночастицы во времени. Показано, что в зависимости от числа атомов в наночастице возможны различные конечные установившиеся формы наноструктуры сплавов, как аморфные, так и новые кристаллические структуры, отличающиеся от исходной кристаллической наноструктуры сплава. Приведены численные результаты для наночастиц титана и сплава титана с никелем (нитинола).


И.К. Краснов, Т.Ю. Мозжорина, А.Н. Баланин Численное моделирование перестройки наноструктуры сплавов методами молекулярной динамики. Математическое моделирование и численные методы, 2017, № 4, с. 3–19.



519.6 Численное решение задач оптимального управления с переключением методом пристрелки

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-2-94106


Проведен численный эксперимент по использованию метода пристрелки при решении задач оптимального управления с переключением. На примере задачи мягкого прилунения отработан алгоритм, обеспечивающий сходимость метода Ньютона в задачах подобного рода. Проведен анализ точности расчетов.


Мозжорина Т.Ю. Численное решение задач оптимального управления с пере- ключением методом пристрелки. Математическое моделирование и численные ме- тоды, 2017, No 2, с. 94–106.



519.688 Численное статистическое моделирование процесса обтекания летательных аппаратов потоком разреженного газа

Краснов И. К. (МГТУ им.Н.Э.Баумана), Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Джус Д. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-3-7182


Рассмотрено применение метода прямого статистического моделирования к задачам газовой динамики в разреженной области. Предложен аналитический метод задания и учета сложных граничных условий, связанных с геометрией находящегося в расчетной области тела. Разработан алгоритм рационального описания обтекаемого газом тела.


Краснов И.К., Мозжорина Т.Ю., Джус Д.В. Численное статистическое модели- рование процесса обтекания летательных аппаратов потоком разреженного газа. Математическое моделирование и численные методы, 2017, No 3, с. 71–82.