Рубрика: "05.07.00 Авиационная и ракетная техника"



533.6.011.31.5:532.582.33 Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями

Котенев В. П. (МГТУ им.Н.Э.Баумана), Сысенко В. А.


doi: 10.18698/2309-3684-2015-3-5867


Рассмотрена задача определения давления на поверхности тел, обтекаемых потоком газа с малой сверхзвуковой скоростью (M< 1,5). Разработан экономичный алгоритм для расчета давления на участке поверхности затупленных тел вращения. Приведены примеры расчетов обтекания сферы и эллипсоидов с разными отношениями полуосей. Сравнение с точными численными расчетами показывает эффективность предложенного подхода.


Котенев В. П., Сысенко В. А. Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями. Математическое моделирование и численные методы, 2015, №3 (7), c. 58-67



629.762 Моделирование параметров наддува свободного пространства контейнера при газодинамическом выбросе летательного аппарата с учетом свойств реального газа

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-3-5378


Рассмотрен процесс наддува свободного пространства контейнера из баллона высокого давления, предшествующий газодинамическому выбросу летательного аппарата. Выполнены сравнительные расчеты этого процесса в квазистационарном приближении с использованием уравнений состояния идеального и реального газа. Показана необходимость учета отклонений термодинамических свойств рабочей среды от идеально-газового поведения для правильного определения запаса газа в баллоне и изменения температуры в наддуваемых объемах.


Плюснин А. В. Моделирование параметров наддува свободного пространства контейнера при газодинамическом выбросе летательного аппарата с учетом свойств реального газа. Математическое моделирование и численные методы, 2016, №3 (11), c. 53-78



5 Решение задач аэродинамического проектирования с применением многопроцессорной вычислительной машины

Братчев А. В., Дубровина А. Ю., Котенев В. П. (МГТУ им.Н.Э.Баумана), Максимов Ф. А. (Институт автоматизации проектирования РАН), Шевелев Ю. Д. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2015-1-1730


Предложен метод создания геометрической формы летательного аппарата (ЛА) для расчета параметров обтекания аэрогазодинамическим потоком, а также метод создания расчетной сетки для решения уравнений Навье — Стокса в тонком слое в окрестности ЛА. Представлены результаты численного моделирования обтекания ЛА аэрогазодинамическим потоком с использованием многопроцессорной вычислительной системы.


Братчев А. В., Дубровина А. Ю., Котенев В. П., Максимов Ф. А., Шевелев Ю. Д. Решение задач аэродинамического проектирования с применением многопроцессорной вычислительной машины. Математическое моделирование и численные методы, 2015, №1 (5), c. 17-30



539.3 Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине

Белкин А. Е. (МГТУ им.Н.Э.Баумана), Семенов В. К. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-1737


Рассмотрена задача математического моделирования испытаний по обкатке массивной шины на стенде с беговым барабаном, в ходе которых определены характеристики сопротивления качению шины. Подробно изложены основные этапы построения модели. Приведена формулировка контактной задачи свободного стационарного качения шины по испытательному барабану с учетом рассеяния энергии в резине при циклическом деформировании. Вязкоупругое поведение резины описано с помощью модели Бергстрема — Бойс, числовые параметры которой установлены по результатам испытаний образцов. Условия контакта в нормальном и тангенциальном направлениях сформулированы с использованием функций внедрения, для выполнения контактных ограничений применен метод штрафа. Численное решение трехмерной задачи вязкоупругости получено методом конечных элементов. Для оценки адекватности построенной модели проведено сравнение результатов расчетов с данными испытаний массивной шины на стенде Hasbach по значениям полученных сил сопротивления качению при различных
нагрузках на шину. Сопоставлены распределения давления в площади контакта, полученные расчетным путем и экспериментально с применением оборудования фирмы XSENSOR Technology Corporation.


Белкин А. Е., Семенов В. К. Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине. Математическое моделирование и численные методы, 2016, №1 (9), c. 17-37



629.762:532.5.031 Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-77100


Рассмотрены внутренние (колебания топлива в баках) и внешние (определение присоединенных масс и моментов инерции) задачи нестационарного взаимодействия корпуса ЛА и идеальной несжимаемой жидкости и их формулировки в виде граничных интегральных уравнений. Приведены формулы эффективного решения указанных задач методом граничных элементов применительно к телам вращения и примеры расчетов.


Плюснин А. В. Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов. Математическое моделирование и численные методы, 2014, №2 (2), c. 77-100



533.6:51-71 Исследование влияния энергомассообмена на течение в «следе» сверхзвуковых моделей конических тел

Сидняев Н. И. (МГТУ им.Н.Э.Баумана), Гордеева Н. М. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-1-3149


Представлены исследования по динамике движения и переноса энергии при сверхзвуковом течении в донной области. Показано, что течение в донной области существенно зависит от структуры пограничного слоя на участке между задней кромкой и точкой прилипания на осевой линии, в которой сходится пограничный слой, оторвавшийся от задней кромки. Включены исследование влияния массоподвода газа в донную область с поверхности тела и дна и теплообмена в донной области. Получено решение задачи о ближнем следе за осесимметричным телом без учета рециркуляции на ограниченном расстоянии от кормовой части.


Сидняев Н. И., Гордеева Н. М. Исследование влияния энергомассообмена на течение в «следе» сверхзвуковых моделей конических тел. Математическое моделирование и численные методы, 2015, №1 (5), c. 31-49



629.78 Математическое моделирование процесса раскрытия солнечной батареи большой площади

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Фарафонов Б. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-101114


Построена математическая модель процесса раскрытия многозвенной конструкции солнечной батареи с тросовой системой раскрытия. На основе анализа кинематической схемы системы раскрытия выбраны размеры радиусов роликов и передаточного отношения двух типов шестеренчатых механизмов, обеспечивающих заданную последовательность фиксации звеньев. Для исследования процесса раскрытия солнечной батареи использовано уравнение Лагранжа второго рода. Отличительной особенностью предлагаемого подхода является итерационный способ учета деформации тросов системы синхронизации. Разработанная математическая модель может быть использована для выбора оптимальных конструктивных параметров и характеристик системы раскрытия, а также для анализа нештатных ситуаций и оценки надежности процесса раскрытия.


Бушуев А. Ю., Фарафонов Б. А. Математическое моделирование процесса раскрытия солнечной батареи большой площади. Математическое моделирование и численные методы, 2014, №2 (2), c. 101-114



<< 2