Рубрика: "05.07.00 Авиационная и ракетная техника"
doi: 10.18698/2309-3684-2014-1-6881
Разработаны аналитические формулы для быстрого и точного расчета давления на участке поверхности тел вращения произвольного очертания, обтекаемых сверхзвуковым потоком газа. Рассмотрены примеры применения метода для пространственных течений газа.
Котенев В. П., Сысенко В. А. Аналитические формулы повышенной точности для расчета распределения давления на поверхности выпуклых затупленных тел вращения произвольного очертания. Математическое моделирование и численные методы, 2014, №1 (1), c. 68-81
doi: 10.18698/2309-3684-2016-2-3954
Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.
Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию. Математическое моделирование и численные методы, 2016, №2 (10), c. 39-54
doi: 10.18698/2309-3684-2015-1-1730
Предложен метод создания геометрической формы летательного аппарата (ЛА) для расчета параметров обтекания аэрогазодинамическим потоком, а также метод создания расчетной сетки для решения уравнений Навье — Стокса в тонком слое в окрестности ЛА. Представлены результаты численного моделирования обтекания ЛА аэрогазодинамическим потоком с использованием многопроцессорной вычислительной системы.
Братчев А. В., Дубровина А. Ю., Котенев В. П., Максимов Ф. А., Шевелев Ю. Д. Решение задач аэродинамического проектирования с применением многопроцессорной вычислительной машины. Математическое моделирование и численные методы, 2015, №1 (5), c. 17-30
doi: 10.18698/2309-3684-2014-2-77100
Рассмотрены внутренние (колебания топлива в баках) и внешние (определение присоединенных масс и моментов инерции) задачи нестационарного взаимодействия корпуса ЛА и идеальной несжимаемой жидкости и их формулировки в виде граничных интегральных уравнений. Приведены формулы эффективного решения указанных задач методом граничных элементов применительно к телам вращения и примеры расчетов.
Плюснин А. В. Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов. Математическое моделирование и численные методы, 2014, №2 (2), c. 77-100
doi: 10.18698/2309-3684-2016-1-1737
Рассмотрена задача математического моделирования испытаний по обкатке массивной шины на стенде с беговым барабаном, в ходе которых определены характеристики сопротивления качению шины. Подробно изложены основные этапы построения модели. Приведена формулировка контактной задачи свободного стационарного качения шины по испытательному барабану с учетом рассеяния энергии в резине при циклическом деформировании. Вязкоупругое поведение резины описано с помощью модели Бергстрема — Бойс, числовые параметры которой установлены по результатам испытаний образцов. Условия контакта в нормальном и тангенциальном направлениях сформулированы с использованием функций внедрения, для выполнения контактных ограничений применен метод штрафа. Численное решение трехмерной задачи вязкоупругости получено методом конечных элементов. Для оценки адекватности построенной модели проведено сравнение результатов расчетов с данными испытаний массивной шины на стенде Hasbach по значениям полученных сил сопротивления качению при различных
нагрузках на шину. Сопоставлены распределения давления в площади контакта, полученные расчетным путем и экспериментально с применением оборудования фирмы XSENSOR Technology Corporation.
Белкин А. Е., Семенов В. К. Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине. Математическое моделирование и численные методы, 2016, №1 (9), c. 17-37
doi: 10.18698/2309-3684-2015-1-8393
Выполнена обработка наблюдений искусственного небесного тела 43096, полученных в 2006 ̶ 2012 годах в рамках проекта «Научная сеть оптических инструментов для астрометрических и фотометрических наблюдений» — НСОИ АФН (ISON). Определены кеплеровы элементы орбиты, вектор состояния на 24.11.2006 г. 1 ч 55 мин 50,76 с UTC. Выполнено численное интегрирование уравнений движения с учетом возмущений со стороны полярного сжатия Земли, Луны, Солнца и давления солнечного излучения.
Основываясь на численной модели движения в околоземном пространстве, учитывающей только наибольшие возмущения, предложен способ сведения искусственных небесных тел с высоких орбит.
Впервые по объектам с большим отношением площади поверхности к массе получено столь значительное число данных на длительных интервалах времени, которое позволило выявить их особенности.
Базей А. А., Базей Н. В., Боровин Г. К., Золотов В. Е., Кашуба В. И., Кашуба С. Г., Куприянов В. В., Молотов И. Е. Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите. Математическое моделирование и численные методы, 2015, №1 (5), c. 83-93
doi: 10.18698/2309-3684-2017-2-3964
Рассмотрена одномерная схема расчета нагрузок на корпус летательного аппарата от втекания воды в кольцевое пространство пускового контейнера при подводном газодинамическом выбросе. Внешняя гидродинамическая задача решается с использованием теории потенциала. Деформации стенок летательного аппарата и пускового контейнера учитываются на основе решения статической задачи Ламе.
Плюснин А.В. Математическое моделирование процесса втекания воды в коль- цевое прстранство контейнера при подводном газодинамическом выбросе лета- тельного аппарата. Математическое моделирование и численные методы, 2017, No 2, с. 39–64.