Рубрика: "05.07.00 Авиационная и ракетная техника"
doi: 10.18698/2309-3684-2015-1-8393
Выполнена обработка наблюдений искусственного небесного тела 43096, полученных в 2006 ̶ 2012 годах в рамках проекта «Научная сеть оптических инструментов для астрометрических и фотометрических наблюдений» — НСОИ АФН (ISON). Определены кеплеровы элементы орбиты, вектор состояния на 24.11.2006 г. 1 ч 55 мин 50,76 с UTC. Выполнено численное интегрирование уравнений движения с учетом возмущений со стороны полярного сжатия Земли, Луны, Солнца и давления солнечного излучения.
Основываясь на численной модели движения в околоземном пространстве, учитывающей только наибольшие возмущения, предложен способ сведения искусственных небесных тел с высоких орбит.
Впервые по объектам с большим отношением площади поверхности к массе получено столь значительное число данных на длительных интервалах времени, которое позволило выявить их особенности.
Базей А. А., Базей Н. В., Боровин Г. К., Золотов В. Е., Кашуба В. И., Кашуба С. Г., Куприянов В. В., Молотов И. Е. Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите. Математическое моделирование и численные методы, 2015, №1 (5), c. 83-93
doi: 10.18698/2309-3684-2014-2-77100
Рассмотрены внутренние (колебания топлива в баках) и внешние (определение присоединенных масс и моментов инерции) задачи нестационарного взаимодействия корпуса ЛА и идеальной несжимаемой жидкости и их формулировки в виде граничных интегральных уравнений. Приведены формулы эффективного решения указанных задач методом граничных элементов применительно к телам вращения и примеры расчетов.
Плюснин А. В. Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов. Математическое моделирование и численные методы, 2014, №2 (2), c. 77-100
51-71:74 Длиннопериодические колебания летательных аппаратов при гиперзвуковых скоростях
doi: 10.18698/2309-3684-2014-1-99114
Дан теоретический анализ длиннопериодических (фугоидных) колебаний летательного аппарата, обладающего подъемной силой и совершающего полет с гиперзвуковой скоростью в произвольной атмосфере. Причиной колебаний является взаимный переход кинетической энергии в потенциальную при полете по траектории, имеющей колебательный характер и определяемой в первую очередь регулируемым продольным моментом, равным нулю при установившемся полете. Показано, что с приближением скорости к первой космической уменьшение силы тяжести с высотой преобладает над уменьшением плотности атмосферы так, что с ростом скорости период фугоидных колебаний асимптотически стремится к соответствующему периоду обращения летательного аппарата. Получены аналитические выражения для короткопериодических колебаний, или колебаний по углу атаки. Показано, что эти выражения и выражения для длиннопериодических колебаний хорошо согласуются с результатами численного решения.
Сидняев Н. И., Глушков П. А. Длиннопериодические колебания летательных аппаратов при гиперзвуковых скоростях. Математическое моделирование и численные методы, 2014, №1 (1), c. 99-114
doi: 10.18698/2309-3684-2016-1-1737
Рассмотрена задача математического моделирования испытаний по обкатке массивной шины на стенде с беговым барабаном, в ходе которых определены характеристики сопротивления качению шины. Подробно изложены основные этапы построения модели. Приведена формулировка контактной задачи свободного стационарного качения шины по испытательному барабану с учетом рассеяния энергии в резине при циклическом деформировании. Вязкоупругое поведение резины описано с помощью модели Бергстрема — Бойс, числовые параметры которой установлены по результатам испытаний образцов. Условия контакта в нормальном и тангенциальном направлениях сформулированы с использованием функций внедрения, для выполнения контактных ограничений применен метод штрафа. Численное решение трехмерной задачи вязкоупругости получено методом конечных элементов. Для оценки адекватности построенной модели проведено сравнение результатов расчетов с данными испытаний массивной шины на стенде Hasbach по значениям полученных сил сопротивления качению при различных
нагрузках на шину. Сопоставлены распределения давления в площади контакта, полученные расчетным путем и экспериментально с применением оборудования фирмы XSENSOR Technology Corporation.
Белкин А. Е., Семенов В. К. Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине. Математическое моделирование и численные методы, 2016, №1 (9), c. 17-37
doi: 10.18698/2309-3684-2014-3-5573
Рассмотрен основанный на термохимических расчетах способ учета эффекта вторичного догорания продуктов сгорания твердотопливного энергоустройства в рабочем объеме системы газодинамического выброса летательного аппарата (ЛА). Предложенный способ легко использовать в инженерных расчетах систем газодинамического выброса, а также для анализа результатов испытаний, в которых имеет место эффект вторичного догорания.
Плюснин А. В. Учет эффекта вторичного догорания при расчетах систем газодинамического выброса летательного аппарата. Математическое моделирование и численные методы, 2014, №3 (3), c. 55-73
doi: 10.18698/2309-3684-2014-3-324
Предложен алгоритм численного моделирования сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов, который позволяет рассчитывать все параметры трехмерного аэрогазодинамического потока в окрестности поверхности аппарата, теплообмен на поверхности, процессы внутреннего тепломассопереноса в конструкции из термодеструктирующего полимерного композитного материала, а также процессы изменения термодеформирования композитной конструкции, включающие в себя эффекты изменения упругих характеристик композита, переменную тепловую деформацию, усадку, вызванную термодеструкцией, образование внутрипорового давления газов в композите. Приведен пример численного моделирования сопряженных процессов в модельной композитной конструкции высокоскоростного летательного аппарата, иллюстрирующий возможности предложенного алгоритма.
Димитриенко Ю. И., Коряков М. Н., Захаров А. А., Строганов А. С. Численное моделирование сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов. Математическое моделирование и численные методы, 2014, №3 (3), c. 3-24
doi: 10.18698/2309-3684-2016-2-3954
Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.
Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию. Математическое моделирование и численные методы, 2016, №2 (10), c. 39-54