Рубрика: "05.07.00 Авиационная и ракетная техника"



539.3 Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине

Белкин А. Е. (МГТУ им.Н.Э.Баумана), Семенов В. К. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-1737


Рассмотрена задача математического моделирования испытаний по обкатке массивной шины на стенде с беговым барабаном, в ходе которых определены характеристики сопротивления качению шины. Подробно изложены основные этапы построения модели. Приведена формулировка контактной задачи свободного стационарного качения шины по испытательному барабану с учетом рассеяния энергии в резине при циклическом деформировании. Вязкоупругое поведение резины описано с помощью модели Бергстрема — Бойс, числовые параметры которой установлены по результатам испытаний образцов. Условия контакта в нормальном и тангенциальном направлениях сформулированы с использованием функций внедрения, для выполнения контактных ограничений применен метод штрафа. Численное решение трехмерной задачи вязкоупругости получено методом конечных элементов. Для оценки адекватности построенной модели проведено сравнение результатов расчетов с данными испытаний массивной шины на стенде Hasbach по значениям полученных сил сопротивления качению при различных
нагрузках на шину. Сопоставлены распределения давления в площади контакта, полученные расчетным путем и экспериментально с применением оборудования фирмы XSENSOR Technology Corporation.


Белкин А. Е., Семенов В. К. Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине. Математическое моделирование и численные методы, 2016, №1 (9), c. 17-37



629.762 Учет эффекта вторичного догорания при расчетах систем газодинамического выброса летательного аппарата

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-5573


Рассмотрен основанный на термохимических расчетах способ учета эффекта вторичного догорания продуктов сгорания твердотопливного энергоустройства в рабочем объеме системы газодинамического выброса летательного аппарата (ЛА). Предложенный способ легко использовать в инженерных расчетах систем газодинамического выброса, а также для анализа результатов испытаний, в которых имеет место эффект вторичного догорания.


Плюснин А. В. Учет эффекта вторичного догорания при расчетах систем газодинамического выброса летательного аппарата. Математическое моделирование и численные методы, 2014, №3 (3), c. 55-73



5 Решение задач аэродинамического проектирования с применением многопроцессорной вычислительной машины

Братчев А. В., Дубровина А. Ю., Котенев В. П. (МГТУ им.Н.Э.Баумана), Максимов Ф. А. (Институт автоматизации проектирования РАН), Шевелев Ю. Д. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2015-1-1730


Предложен метод создания геометрической формы летательного аппарата (ЛА) для расчета параметров обтекания аэрогазодинамическим потоком, а также метод создания расчетной сетки для решения уравнений Навье — Стокса в тонком слое в окрестности ЛА. Представлены результаты численного моделирования обтекания ЛА аэрогазодинамическим потоком с использованием многопроцессорной вычислительной системы.


Братчев А. В., Дубровина А. Ю., Котенев В. П., Максимов Ф. А., Шевелев Ю. Д. Решение задач аэродинамического проектирования с применением многопроцессорной вычислительной машины. Математическое моделирование и численные методы, 2015, №1 (5), c. 17-30



533.6.011.31.5:532.582.33 Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями

Котенев В. П. (МГТУ им.Н.Э.Баумана), Сысенко В. А.


doi: 10.18698/2309-3684-2015-3-5867


Рассмотрена задача определения давления на поверхности тел, обтекаемых потоком газа с малой сверхзвуковой скоростью (M< 1,5). Разработан экономичный алгоритм для расчета давления на участке поверхности затупленных тел вращения. Приведены примеры расчетов обтекания сферы и эллипсоидов с разными отношениями полуосей. Сравнение с точными численными расчетами показывает эффективность предложенного подхода.


Котенев В. П., Сысенко В. А. Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями. Математическое моделирование и численные методы, 2015, №3 (7), c. 58-67



521.2:521.3:521.61 Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите

Базей А. А. (НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Базей Н. В. (НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Боровин Г. К. (Институт прикладной математики им. М.В. Келдыша РАН), Золотов В. Е. (Институт прикладной математики им. М.В. Келдыша РАН), Кашуба В. И. (НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Кашуба С. Г. (НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Куприянов В. В. (ГАО РАН), Молотов И. Е. (Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2015-1-8393


Выполнена обработка наблюдений искусственного небесного тела 43096, полученных в 2006 ̶ 2012 годах в рамках проекта «Научная сеть оптических инструментов для астрометрических и фотометрических наблюдений» — НСОИ АФН (ISON). Определены кеплеровы элементы орбиты, вектор состояния на 24.11.2006 г. 1 ч 55 мин 50,76 с UTC. Выполнено численное интегрирование уравнений движения с учетом возмущений со стороны полярного сжатия Земли, Луны, Солнца и давления солнечного излучения.
Основываясь на численной модели движения в околоземном пространстве, учитывающей только наибольшие возмущения, предложен способ сведения искусственных небесных тел с высоких орбит.
Впервые по объектам с большим отношением площади поверхности к массе получено столь значительное число данных на длительных интервалах времени, которое позволило выявить их особенности.


Базей А. А., Базей Н. В., Боровин Г. К., Золотов В. Е., Кашуба В. И., Кашуба С. Г., Куприянов В. В., Молотов И. Е. Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите. Математическое моделирование и численные методы, 2015, №1 (5), c. 83-93



629.762 Математическое моделирование процесса втекания воды в кольцевое пространство контейнера при подводном газодинамическом выбросе летательного аппарата

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-2-3964


Рассмотрена одномерная схема расчета нагрузок на корпус летательного аппарата от втекания воды в кольцевое пространство пускового контейнера при подводном газодинамическом выбросе. Внешняя гидродинамическая задача решается с использованием теории потенциала. Деформации стенок летательного аппарата и пускового контейнера учитываются на основе решения статической задачи Ламе.


Плюснин А.В. Математическое моделирование процесса втекания воды в коль- цевое прстранство контейнера при подводном газодинамическом выбросе лета- тельного аппарата. Математическое моделирование и численные методы, 2017, No 2, с. 39–64.



629.78 Математическое моделирование процесса раскрытия солнечной батареи большой площади

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Фарафонов Б. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-101114


Построена математическая модель процесса раскрытия многозвенной конструкции солнечной батареи с тросовой системой раскрытия. На основе анализа кинематической схемы системы раскрытия выбраны размеры радиусов роликов и передаточного отношения двух типов шестеренчатых механизмов, обеспечивающих заданную последовательность фиксации звеньев. Для исследования процесса раскрытия солнечной батареи использовано уравнение Лагранжа второго рода. Отличительной особенностью предлагаемого подхода является итерационный способ учета деформации тросов системы синхронизации. Разработанная математическая модель может быть использована для выбора оптимальных конструктивных параметров и характеристик системы раскрытия, а также для анализа нештатных ситуаций и оценки надежности процесса раскрытия.


Бушуев А. Ю., Фарафонов Б. А. Математическое моделирование процесса раскрытия солнечной батареи большой площади. Математическое моделирование и численные методы, 2014, №2 (2), c. 101-114



<< 2