Rubric: "05.07.00 Aviation and Rocket-Space Engineering"



533.6.011.31.5:532.582.33 Analytical formula with improved accuracy for calculating pressure distribution on the surface of convex, blunt rotation bodies of arbitrary shape

Kotenev V. P. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia), Sysenko V. A. (JSC MIC NPO Mashinostroyenia)


doi: 10.18698/2309-3684-2014-1-6881


The authors developed the analytical formula for fast and accurate calculation of pressure on the surface of rotation bodies with arbitrary shape, which were flown by supersonic gas. The paper provides examples of applying the method for three-dimensional flows of gas.


Kotenev V., Sysenko V. Analytical formula with improved accuracy for calculating pressure distribution on the surface of convex, blunt rotation bodies of arbitrary shape. Маthematical Modeling and Coтputational Methods, 2014, №1 (1), pp. 68-81



533.6:51-71 Investigation of the energy and mass transfer influence on the wake flow of supersonic conical models

Sidnyaev N. I. (Bauman Moscow State Technical University), Gordeeva N. M. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2015-1-3149


We studied the dynamics of motion and energy transfer in supersonic flow in the base region. It is shown in the article that the current in the base region largely depends on the boundary layer structure in the area between the trailing edge and the sticking point on the centerline, where the boundary layer cut out from the rear edge converges. The study of the effect of gas mass injection into the base region from the body surface and the bottom as well as heat transfer in the bottom region is included. The resulting solution of the problem of the middle wake for axisymmetric body without considering recirculation at a limited distance from the stern has been obtained.


Sidnyaev N., Gordeeva N. Investigation of the energy and mass transfer influence on the wake flow of supersonic conical models. Маthematical Modeling and Coтputational Methods, 2015, №1 (5), pp. 31-49



629.762:532.5.031 Boundary-element-method modelling of inside and outside non-stationary interaction of aircraft body and liquid

Plyusnin A. V. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia)


doi: 10.18698/2309-3684-2014-2-77100


The article considers inner and outer problems of non-stationary interaction between aircraft body and incompressible ideal fluid and statement of the problems in the form of boundary integral equations. By inner problems we mean vibration of fuel in tanks and by outer problems we mean determination of additional masses and moments of inertia. We provide formula of efficient solutions for these problems by the boundary element method as applied to bodies of revolution and examples of calculations.


Plyusnin A. Boundary-element-method modelling of inside and outside non-stationary interaction of aircraft body and liquid. Маthematical Modeling and Coтputational Methods, 2014, №2 (2), pp. 77-100



629.78 Mathematical modelling of deployment of large-area solar array

Bushuev A. Y. (Bauman Moscow State Technical University), Farafanov B. A. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2014-2-101114


We have built a mathematical model for deployment of multibody solar array with a cable system of deployment. On the basis of analysis of the kinematic scheme of deployment system we have chosen the dimensions of the radii of the rollers and gear ratio of the two types of gear mechanisms which provide the preset sequence of fixation of sections. We used Lagrange equation of the second kind for studying deployment of the solar battery array. A distinctive feature of this approach is application of iterative method for taking into account deformation of the cables of synchronizing system. The mathematical model can be used to choose optimal design factors and deployment system performance requirements. It is also valuable for dealing with worst-case situations and verifying the reliability of deployment procedure.


Bushuev A., Farafanov B. Mathematical modelling of deployment of large-area solar array. Маthematical Modeling and Coтputational Methods, 2014, №2 (2), pp. 101-114



533.6.011.31.5:532.582.33 Calculation of the pressure when streamlining blunt bodies with small supersonic speeds

Kotenev V. P. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia), Sysenko V. A. (JSC MIC NPO Mashinostroyenia)


doi: 10.18698/2309-3684-2015-3-5867


The article considers the problem of determining the pressure on the body surface streamlined by a gas flow with a small supersonic speed (M < 1,5).The economic algorithm for calculating the pressure on the part of the surface of blunt bodies of revolution is developed. Examples of flow calculations over spheres and ellipsoids with different semi-axes ratios are presented. Comparison with accurate numerical calculations shows the effectiveness of the proposed approach.


Kotenev V., Sysenko V. Calculation of the pressure when streamlining blunt bodies with small supersonic speeds. Маthematical Modeling and Coтputational Methods, 2015, №3 (7), pp. 58-67



629.762 Calculation of aircraft gas-dynamic ejection systems with due consideration of the secondary combustion effects

Plyusnin A. V. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia)


doi: 10.18698/2309-3684-2014-3-5573


The article presents a method of accounting for secondary combustion effects when solid propellant power device is used for the gas-dynamic ejection of lifting vehicles. The method is based on thermo chemistry calculations. The suggested method can be easily applied to engineering calculations of aircraft gas-dynamic ejection systems as well as to the analysis of experimental data involving secondary combustion effects.


Plyusnin A. Calculation of aircraft gas-dynamic ejection systems with due consideration of the secondary combustion effects. Маthematical Modeling and Coтputational Methods, 2014, №3 (3), pp. 55-73



629.762 Simulating mass-consuming characteristics of power devices providing gas-dynamic ejection of the flying vehicle with setup parameters

Plyusnin A. V. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia)


doi: 10.18698/2309-3684-2017-1-5577


The article introduces and provides a rationale for the mathematical theory which defines the mass-consuming characteristics of the power devices designed for providing the gas-dynamic ejection of the flying vehicle from the launcher-container with the set-up restrictions on parameters. We present a visual geometrical interpretation of the offered method. The calculations of the gas-dynamic emission parameters and the intraballistic computation of the power device with the propellant grain operation confirm the correctness of the theoretical constructions and their practical feasibility.


Plyusnin A. Simulating mass-consuming characteristics of power devices providing gas-dynamic ejection of the flying vehicle with setup parameters. Маthematical Modeling and Coтputational Methods, 2017, №1 (13), pp. 55-77



5 Problem solution of aerodynamic design using multiprocessor computers

Bratchev A. V. (JSC MIC NPO Mashinostroyenia), Dubrovina A. Y. (JSC MIC NPO Mashinostroyenia), Kotenev V. P. (Bauman Moscow State Technical University/JSC MIC NPO Mashinostroyenia), Maksimov F. A. (Institute for Computer Aided Design of the Russian Academy of Sciences), Shevelev Y. D. (Institute for Computer Aided Design of the Russian Academy of Sciences)


doi: 10.18698/2309-3684-2015-1-1730


The article discusses a method for constructing an aircraft geometric shape for computing the parameters of aerogasdynamic flow as well as a method of meshing near the model to simulate the flow within the Navier–Stokes equations in the thin layer approximation. The results of the flow simulation are given. The calculations were performed on a multiprocessor computer system.


Bratchev A., Dubrovina A., Kotenev V., Maksimov F., Shevelev Y. Problem solution of aerodynamic design using multiprocessor computers. Маthematical Modeling and Coтputational Methods, 2015, №1 (5), pp. 17-30



539.3 Mathematical modeling of massive tire stationary rolling on the chassis dynamometer with regard to energy dissipation in rubber

Belkin A. E. (Bauman Moscow State Technical University), Semenov V. K. (Bauman Moscow State Technical University)


doi: 10.18698/2309-3684-2016-1-1737


The article examines the problem of mathematical modeling tests of massive tire bench run with the chassis dynamometer. Conducted tests enable to define the characteristics of resistance to the tire rolling. The article contains the main stages of model building. We give a formulation for the contact problem of tire stationary free rolling on the test drum considering the energy dissipation in the rubber during cyclic deformation. We also describe a rubber viscoelastic behavior by the model Bergstrom – Boyce and ascertain its numerical parameters according to the samples tests results. The contact conditions for normal and tangential directions are formulated on basis of the penetration function. For the contact restrictions implementation we use the penalty method and obtain the numerical solution of the three-dimensional viscoelasticity problem by the finite element method. To estimate the adequacy of the built model, we compare the calculation results with the test data received for massive tire on Hasbach test equipment. For this purpose rolling resistance forces under different loads were collated. The pressure distribution in the contact area obtained from calculations and experiments by using XSENSOR Technology Corporation equipment are also juxtaposed.


Belkin A., Semenov V. Mathematical modeling of massive tire stationary rolling on the chassis dynamometer with regard to energy dissipation in rubber. Маthematical Modeling and Coтputational Methods, 2016, №1 (9), pp. 17-37



1>>