5 Problem solution of aerodynamic design using multiprocessor computers

Bratchev A. V., Dubrovina A. Y., Kotenev V. P. (Bauman Moscow State Technical University), Maksimov F. A. (Institute for Computer Aided Design of the Russian Academy of Sciences), Shevelev Y. D. (Institute for Computer Aided Design of the Russian Academy of Sciences)

MATHEMATICAL MODELING, AIRCRAFT MODEL, MESH, NAVIER–STOKES EQUATION, HYPERSONIC FLOW.


doi: 10.18698/2309-3684-2015-1-1730


The article discusses a method for constructing an aircraft geometric shape for computing the parameters of aerogasdynamic flow as well as a method of meshing near the model to simulate the flow within the Navier–Stokes equations in the thin layer approximation. The results of the flow simulation are given. The calculations were performed on a multiprocessor computer system.


[1] Kotenev V.P., Sysenko V.A. Matematicheskoe modelirovanie i chislennye menody – Mathematical modeling and Numerical Methods, 2014, no. 1, pp. 68−81.
[2] Maksimov F.A., Shevelev Yu.D. Modelirovanie techeniya okolo kryla konechnogo razmera [Simulation of the Flow around a Wing of Finite Size]. Proceedings of the International Scientific-Practical Conference “Third Okunev Memorial Lectures”. St. Petersburg, Baltic State Technical University Publ., 2003, vol. 1, pp. 59−67.
[3] Maksimov F.A., Shevelev Yu.D. Techenie okolo rakety s krestoobraznym krylom [Flow Near a Cruciform-Winged Rocket]. Proceedings of the IV International scientific conference of the Volga regional center of the Russian Academy of Missile and Artillery Sciences. Sarov, Russian Federal Nuclear Center — All-Russian Research Institute of Experimental Physics Publ., 2006,
[4] Ivanov V.I., Popov V.Yu. Konformnye otobrazheniya i ikh prilozheniya [Conformal Mappings and Their Applications]. Moscow, URSS Editorial Publ., 2002.
[5] Shevelev Yu.D., Maksimov F.A. Chislennoe modelirovanie trekhmernykh prostranstvennykh sverkhzvukovykh techeniy vyazkogo gaza s otryvom potoka [Numerical simulation of three dimensional spatial supersonic flows of a viscous gas with flow separation]. In: Matematicheskoe modelirovanie. Problemy i rezultaty. Seriya “Informatika” [Mathematical modeling. Results and Problems. Series: Computer Science]. Makarov I.M., Belotserkovskiy O.M., eds, Moscow,
Nauka Publ., 2003, pp. 384−421.
[6] Maksimov F.A., Churakov D.A., Shevelev Yu.D. Zhurnal vychislitelnoy matematiki i matematicheskoi fiziki – Journal of Computational Mathematics and Mathematical Physics, 2011, vol. 51, no. 2, pp. 303−328.
[7] Maksimov F.A., Shevelev Yu.D. Postroenie trekhmernykh setok s pomoschyu priblizhennogo konformnogo otobrazheniya [Three-Dimensional Meshing Using Approximate Conformal Mapping]. Proceedings of the IV International scientific conference of the Volga regional center of the Russian Academy of Missile and Artillery Sciences “Supercomputing and Mathematical Modeling”. Sarov, Russian Federal Nuclear Center - All-Russian Research Institute of Experimental Physics Publ., 2013, pp. 401−407.
[8] Gorshkov A.B. Zhurnal vychislitelnoy matematiki i matematicheskoi fiziki – Journal of Computational Mathematics and Mathematical Physics, 2009, vol. 49, no. 9, pp. 1697−1707.
[9] Maksimov F.A. Effektivnost parallelnykh vychisleniy pri reshenii zadach vychislitelnoy aerodinamiki [Efficiency of Parallel Computing for Solving Computational Aerodynamics Problems]. Proceedings of the XVII International Conference on Computational Mechanics and Advanced Applied Software
Systems. Moscow, MAI Publ., 2011, pp. 254−257.


Bratchev A., Dubrovina A., Kotenev V., Maksimov F., Shevelev Y. Problem solution of aerodynamic design using multiprocessor computers. Маthematical Modeling and Coтputational Methods, 2015, №1 (5), pp. 17-30



Download article

Количество скачиваний: 1164