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Предложен метод создания геометрической формы летательного аппарата (ЛА) 
для расчета параметров обтекания аэрогазодинамическим потоком, а также 
метод создания расчетной сетки для решения уравнений Навье — Стокса в тон-
ком слое в окрестности ЛА. Представлены результаты численного моделирования 
обтекания ЛА аэрогазодинамическим потоком с использованием многопроцессор-
ной вычислительной системы. 
 
Ключевые слова: математическое моделирование, модель ЛА, расчетная сетка, 
уравнение Навье — Стокса, гиперзвуковой поток. 
 

Введение. Для решения задач аэродинамического проектирования 
разрабатывается комплекс программ, реализованных на основе урав-
нений Навье — Стокса в приближении тонкого слоя. Для быстрой 
оценки параметров газовой динамики на поверхности тела можно ис-
пользовать модель невязкого газа [1]. Недостаток модели невязкого га-
за заключается в невозможности получения решения задач в условиях, 
когда существенно влияние отрыва потока. Обычно это связано 
с оценкой аэродинамических свойств в нелинейной области. Предпо-
лагается, что решение в этих условиях может быть сделано на основе 
уравнений Навье — Стокса. Однако ограничения мощности компью-
теров в настоящее время требуют привлечения дополнительных до-
пущений, чтобы данное моделирование могло быть осуществлено за 
реальное время. Развиваемый метод основан на уравнениях Навье — 
Стокса в приближении тонкого слоя. Суть данного приближения со-
стоит в учете всех членов уравнений Эйлера и всех членов уравнений 
пограничного слоя в рамках единых уравнений. Фактически учитыва-
ются диссипативные процессы только в направлении нормали к по-
верхности тела. С одной стороны, использование данной модели тече-
ния позволяет учесть все невязкие эффекты во внешнем поле течения 
и наличие вязкого пограничного слоя на обтекаемых поверхностях  
летательного аппарата (ЛА) и в итоге надеяться на адекватное отраже-
ние вязко-невязкого взаимодействия, что является принципиальным.  
С другой стороны, возможности вычислительной техники накладыва-
ют жесткие ограничения на число узлов сетки, что не позволяет стро-
ить и использовать сетки со сгущениями в продольном и поперечном 
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направлениях. При недостаточном разрешении сетки адекватный рас-
чет диссипативных процессов в указанных направлениях при решении 
задач внешнего обтекания представляется практически невозможным. 
Моделирование с учетом вязкого слоя предъявляет существенные тре-
бования к расчетной сетке. Одно из координатных направлений долж-
но быть ортогонально к поверхности обтекаемого тела, а узлы сгуще-
ны к ней. По этой причине построение расчетной сетки является одной 
из важных задач, решению которой необходимо уделять соответст-
вующее внимание. 

Построение модели. Для решения задачи обтекания необходимо 
описать геометрию ЛА. Известен ряд компьютерных программ, ко-
торые позволяют автоматизировать геометрическое проектирование. 
Важным свойством этих программ является возможность непосред-
ственно наблюдать за результатами работы на экране компьютера. 
При построении геометрии сложной формы используют различные 
методы: твердотельный способ, аналитическое описание, теорию 
сплайнов. Так как каждая система имеет свои цели и использует ори-
гинальные методы описания геометрии, то сама передача информа-
ции из одной системы в другую представляет трудности. Для обмена 
информацией между системами разработаны специальные форматы 
данных, анализируя которые, можно получить необходимые сведе-
ния о геометрии (например, о поверхности обтекаемого тела, о пер-
пендикуляре к его поверхности). 

При реализации рассматриваемого комплекса программ в качест-
ве основного формата данных о геометрии ЛА принят STL-формат,  
в котором поверхность представлена в виде набора элементарных 
(треугольных) площадок. Выбор этого формата обусловлен его про-
стотой, широким распространением и возможностью получения в 
большинстве программ геометрического проектирования. 

Кроме того, несложно самостоятельно разработать библиотеку 
генерации примитивных геометрий в STL-формате для используемых 
геометрий в реальном конструировании с учетом возможности изме-
нения характерных параметров (например, формы и удлинения носо-
вой части, стреловидности передней кромки крыла, формы и относи-
тельной толщины профиля и т. д.), затем с использованием операций 
твердотельного геометрического моделирования (объединения, пере-
сечения, вычитания) скомпоновать геометрию реальной формы.  
В конечном итоге это позволяет создать математическую модель ЛА 
с возможностью изменения его геометрии (за счет варьирования ха-
рактерных параметров или добавления новых аэродинамических 
элементов) для поиска оптимальной конфигурации с учетом конст-
руктивных требований и ограничений. 
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Именно так происходит процесс реального аэродинамического про-
ектирования, когда испытывают модель будущего летательного аппара-
та в аэродинамических трубах. Модель изготовляют с учетом значимых 
для аэродинамики элементов конструкции. Для математического моде-
лирования также необходимо учитывать только значимые элементы, а 
это значит, что и создание математической модели для решения задач 
аэродинамики должно проходить самостоятельно. Нелишне будет ска-
зать, что ответственными за создание такой математической модели 
должны быть инженеры по аэродинамике. 

Построение сетки. В настоящее время трудно представить уни-
версальный генератор сетки. Прежде всего это обусловлено ограни-
чением количества узлов, что приводит к необходимости учета ха-
рактера поля течения при распределении узлов в физической 
области. Фактически для каждой достаточно сложной задачи должна 
проводиться адаптация сетки под решение. Это, конечно, не означа-
ет, что автоматизировать построение расчетной сетки невозможно. 
Для геометрий определенного типа такая автоматизация в построе-
нии сетки возможна, что значительно ускоряет решение типовых за-
дач. В любом случае при построении сетки должен быть ряд пара-
метров, которые бы позволяли в определенной мере подстраиваться 
под решение после его получения по предварительным расчетам. 

Для построения сетки в рассматриваемом комплексе программ 
предусмотрен следующий порядок действий: 

1) строится STL-модель летательного аппарата; 
2) выбирается схема каркаса, соответствующая рассматриваемо-

му ЛА; 
3) с помощью конформного отображения строится сетка около 

каркаса; 
4) решается задача поиска точек пересечения координатных ли-

ний, перпендикулярных поверхности каркаса, с поверхностями соот-
ветствующих ЛА и задаваемой внешней границей расчетной области; 

5) узлы расчетной сетки по нормали перераспределяются от по-
верхности тела до внешней границы с учетом необходимости сгуще-
ния узлов около поверхности ЛА. 

В итоге получается трехмерная сетка, построенная набором сече-
ний по продольной координате. Центральным элементом данного ме-
тода является использование каркаса. Под каркасом понимают тело  
с достаточно простым сечением, однотипным по продольной коор-
динате, относительно которого можно построить сетку с помощью 
конформного отображения. Каркас должен быть согласован с гео-
метрией ЛА (должен находиться внутри ЛА). Ниже приведен пример 
построения сетки около осесимметричного корпуса с крестообраз-
ным крылом. Отметим, что многие особенности метода могут изме-
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няться и корректироваться. Например, применение конформного 
отображения при построении сетки в сечении не является обязатель-
ным. Но в любом случае сетки в сечениях должны строиться единым 
способом. Наличие каркаса при этом обеспечивает согласованное по-
ведение сетки по продольной координате. 

Идея каркаса была использована авторами при построении сетки 
около профилированного треугольного крыла [2]. В этом случае кар-
касом может служить плоское крыло нулевой толщины, около кото-
рого сетка достаточно просто строится с помощью функции Жуков-
ского. Отметим, что использование функции Жуковского позволяет 
не только построить сетку, но и автоматически сгустить узлы к кром-
кам крыла, т. е. в этом случае фактически нет необходимости решать 
задачу о распределении узлов на границах, соответствующих телу, и 
на внешней границе расчетной области. При использовании эллипти-
ческих или параболических генераторов сеток от задания данных 
распределений обычно зависит гладкость получаемых сеток. 

При переходе от каркаса к реальной геометрии ортогональность 
координатных линий к телу нарушается, но если эти нарушения не 
очень большие, то на получаемое решение это не оказывает значимо-
го влияния. Функция Жуковского была использована в [3] при по-
строении сетки около корпуса с крылом, в месте сопряжения корпуса 
с крылом ортогональность координатных линий к поверхности тела 
нарушалась значительно. По этой причине в [3] был введен дополни-
тельный этап улучшения сетки с использованием эллиптического ге-
нератора, а предварительно построенная сетка задавала распределе-
ние узлов на границах и использовалась в качестве начальной. 

Пример построения сетки около корпуса с крестообразным 
крылом. Для расчета ракетных конфигураций представляет интерес 
использование отображений, учитывающих и корпус, и крыло. В [4] 
приведена функция, отображающая внешность единичного круга на 
круг с n симметричными разрезами. Функция комплексной перемен-
ной w = f(z) задается последовательностью отображений [3] 

1
1 ;

2 n

p
s

z

   
 

 2 1
;

n
t s s

z
    2 ,nw z t  

где p — радиус разреза; n — число разрезов. На рис. 1 приведены два 
примера сеток при изменении n и , где  — отношение радиуса цен-
тральной части к полному размаху разреза. 

В соответствии с данной функцией в качестве каркаса использу-
ется осесимметричное тело (определяется радиусом в зависимости 
от продольной координаты  R R x ) с расположенными на нем n 

продольными ребрами. Ребра задаются величиной их размаха 
 2 2R R x , естественно, предполагается выполнение неравенства 
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2R R . Число лопастей крыла рассчитываемого варианта ракетной 

конфигурации определяет значение n. 

 

а б 

Рис. 1. Примеры сеток: 

а — n = 2,  = 0,333; б — n = 5,  = 0,667 
 
На рис. 2 приведены составные части модели (рис. 2, а) и рас-

сматриваемая геометрия ЛА, полученная объединением (рис. 2, б). 
Корпус — осесимметричное тело с головной частью в виде конуса  
и цилиндрической центральной частью. Оперение — крестообразное 
крыло из четырех стреловидных консолей с затупленной передней 
кромкой. При решении задачи определения точки пересечения коор-
динатных линий с поверхностью ЛА в качестве искомой выбирается 
максимально удаленная от каркаса. Это позволяет допускать наличие 
в STL-модели ЛА внутренних элементарных площадок. 

 

а б

Рис. 2. Построение модели из набора осесимметричного тела 
и крестообразного оперения 
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На рис. 3 приведены возможный вариант каркаса для построения 
сетки и совместный вид каркаса и модели ЛА. Надо заметить, что для 
одного тела возможны различные варианты каркаса, но есть некото-
рые общие соображения: рассматриваемая геометрия состоит из кор-
пуса (без расположения на нем оперения) и на этой части как размах 
ребра, так и размер центральной части (меньше, чем размер ребра) 
должны быть меньше радиуса корпуса. Если рассматривать исполь-
зуемое отображение при достаточно больших значениях радиуса 
комплексной переменной, то оно фактически будет соответствовать 
отображению окружности на окружность, но в местах, соответст-
вующих оперению, узлы будут сгущаться. В местах, когда на корпусе 
есть оперение с острой передней или боковой кромкой, размах ребра 
должен соответствовать местному размаху оперения. Если кромки 
затупленные, то размах ребра должен быть меньше приблизительно 
на радиус затупления кромок. Использование каркаса позволяет увя-
зать сечения по продольной координате и, в частности, автоматиче-
ски обеспечить предварительное сгущение узлов к кромкам крыла. 

 
а 

 
б 

 

в 

Рис. 3. Каркас (а) и каркас в модели (б, в) 
 
На рис. 4 представлены сетки, построенные около каркаса (ввер-

ху), и соответствующие им, но уже построенные около контура ЛА 
(внизу). Приведены три сечения, соответствующие: цилиндрической 
части, корпусу с оперением на небольшом расстоянии от носка бор-
товой хорды, корпусу за задней кромкой крыла. 



Решение задач аэродинамического проектирования с применением… 

23 

  

  

Рис. 4. Сетки около каркаса и  около сечения модели 
для трех характерных сечений 

 
Математическая модель и метод моделирования. Для расчета 

течений с сильным вязко-невязким взаимодействием рассматривают 
единые уравнения, учитывающие как невязкие, так и вязкие силы. 
Предполагают, что диссипативные процессы в направлении нормали 
к поверхности тела или сдвигового слоя много больше диссипатив-
ных процессов в касательных направлениях. Следовательно, в урав-
нениях Навье — Стокса при вычислении диссипативных членов 
можно пренебречь членами с производными по касательным направ-
лениям. В результате получают уравнения, которые содержат все 
члены уравнений Эйлера, уравнения пограничного слоя, а также вто-
рую производную в уравнении импульсов по нормали к поверхности 
[5, 6]. Получаемую систему уравнений в дальнейшем будем называть 
системой уравнений Навье — Стокса в приближении тонкого слоя. 
Система уравнений в обобщенной криволинейной системе координат 
приведена в [7]. Использование обобщенного преобразования позво-
ляет построить равномерную сетку в виде единичного куба. Коэффи-
циенты матрицы преобразования могут быть вычислены с помощью 
разностей в соответствии с уравнениями, если задано распределение 
узлов в физической области расчета. 

Для численного моделирования используется явная разностная схе-
ма второго порядка аппроксимации типа предиктор – корректор [5, 6]. 
Фактически конвективные члены представляются односторонними 
разностями с переменой направлений, а диссипативные — симмет-
ричными разностями. При использовании явных разностных схем на 
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размер шага по времени накладывается ограничение из условия ус-
тойчивости расчета. Отметим, что учет вязкости в рамках полных 
или упрощенных уравнений Навье — Стокса требует значительного 
сгущения узлов в вязких слоях, что приводит к существенному 
уменьшению шага интегрирования по времени. Но это ограничение  
в основном обусловлено скоростью распространения возмущений,  
а не вязкостью. Вид ограничения на шаг с учетом диссипативного 
члена показывает, что при фиксированной сетке увеличение числа Re 
приводит к возможности увеличения шага интегрирования. Если 
число Re уменьшается (т. е. вязкость потока растет), возможный шаг 
интегрирования уменьшается. В реальности шаг сетки связан с чис-
лом Re. Чем больше число Re, тем больше должно быть сгущение уз-
лов для описания тонких вязких слоев, а уменьшение числа Re до-
пускает использование сеток с меньшим сгущением. Фактически 
расчетная сетка должна строиться с учетом числа Re. Из-за необхо-
димости построения существенно неравномерной сетки шаг интегри-
рования по времени определяется в области наибольшего сгущения 
узлов. Установление при использовании единого шага интегрирова-
ния происходит крайне медленно. Для ускорения установления ис-
пользуется локальный шаг интегрирования — шаг интегрирования  
в каждом узле выбирается локально исходя из местных условий. Это 
обеспечивает распространение возмущения со скоростью 1 узел за  
1 шаг интегрирования при числе Куранта Ku = 1,0. Использование 
локального шага интегрирования приводит к необходимости умень-
шения числа Куранта до Ku = 0,1…0,25. Использование локального 
шага интегрирования не позволяет рассматривать нестационарные 
задачи, но если интерес представляет только установившееся тече-
ние, то локальный шаг позволяет существенно снизить суммарное 
количество шагов интегрирования до установления решения. 

Примеры результатов расчетов. На рис. 5 приведен пример 
расчета в условиях: число Маха M = 8, угол атаки  = 15°, число Рей-
нольдса по длине модели Re = 3106. Течение представлено распреде-
лением плотности в сечении задней кромки крыла, пространствен-
ными линиями тока и поверхностью постоянной плотности на 
подветренной стороне, визуализирующими форму отрывной зоны. 

В [8] приведены результаты моделирования треугольного крыла  
с затупленными кромками. Рассмотрено крыло с углом стреловидно-
сти 75° со сферическим носком и цилиндрическими кромками, кото-
рое обтекается гиперзвуковым потоком совершенного газа с соотно-
шением теплоемкостей, равным 1,4. Числа Маха и Рейнольдса, 
вычисленные по параметрам набегающего потока и радиуса затупле-
ния, составляют M = 9,6 и Re = 4104. Температура торможения не-
возмущенного потока и температура поверхности крыла — соответ-
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ственно 923 и 317 K. Для расчета обтекания крыла сгенерирована 
сетка размером 241101161 (в окружном направлении, по нормали  
и вдоль тела), безразмерное расстояние от тела до первого узла со-
ставляет 0,001. На рис. 6 приведены общий вид модели и сетка  
в крайнем по продольной координате сечении. 

 

Рис. 5. Пример расчета с визуализацией отрывной области 
на подветренной стороне 

 

Рис. 6. Модель треугольного крыла 
с затупленными кромками 
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На рис. 7 представлены линии тока на подветренной стороне, на 
которой образуются линии стекания, соответствующие поперечному 
отрыву потока. В [8] приведено распределение относительного теп-
лового потока в сечениях, перпендикулярных кромке. На рис. 8 при-
ведено сопоставление с результатами работы [7], представленное 
маркерами, соответственно в сечениях X = 4 и Х = 6. Результаты рас-
четов представлены линиями. Данные, полученные разными метода-
ми, согласуются друг с другом. 

 

Рис. 7. Линии тока на подветренной стороне 

 

Рис. 8. Относительный тепловой поток 
 
Программа моделирования реализована как для однопроцессор-

ного варианта вычислительной машины, так и для применения на 
многопроцессорной вычислительной технике. Для ускорения вычис-
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лений используют многосеточный подход с последовательным уд-
воением количества ячеек по координатным направлениям. Решение 
получают на последовательности сеток от относительно грубой до 
достаточно мелких сеток для адекватного описания газодинамиче-
ских градиентов. Расчеты проводят на сетках с общим числом узлов 
от 1…10 на персональном компьютере до 100 млн при использова-
нии многопроцессорной машины. 

 

Рис. 9. Затраты машинного времени на 1000 шагов решения 
 
На рис. 9 приведены затраты машинного времени в зависимости 

от числа используемых процессоров N. Линия 1 соответствует сетке, 
в которой на каждом процессоре было 31 500 узлов, линия 2 — сетке 
с числом узлов, равным 57 330. В зависимости от числа используе-
мых процессоров время почти не увеличивается. С другой стороны, 
уменьшение количества узлов сетки на одном процессоре позволяет 
значительно уменьшить время, требуемое на каждый узел. Более 
полно влияние многопроцессорных вычислений рассмотрено в [6, 9]. 
Фактически параллельные вычисления дают возможность значитель-
но ускорить вычисления или увеличить размерность используемых 
сеток, что позволяет рассматривать более сложные формы ЛА. Рас-
четы проводились на МВС-100К МСЦ РАН. 
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Problem solution of aerodynamic design using 
multiprocessor computers 
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The article discusses a method for constructing an aircraft geometric shape for compu-
ting the parameters of aerogasdynamic flow as well as a method of meshing near the 
model to simulate the flow within the Navier–Stokes equations in the thin layer approxi-
mation. The results of the flow simulation are given. The calculations were performed on 
a multiprocessor computer system.  
 
Key words: mathematical modeling, aircraft model, mesh, Navier–Stokes equation, hy-
personic flow. 
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