doi: 10.18698/2309-3684-2020-1-327
Рассматривается задача построения многоуровневой модели для вычисления упругих свойств полимерных композиционных материалов со сложной структурой армирования при высоких температурах, при которых происходят процессы термодеструкции матрицы и армирующих волокон. Для того, чтобы учесть изменение упругих свойств композита в зависимости от температуры и времени нагрева, предложена 3-х уровневая модель композита. На нижнем уровне этой модели рассматриваются моно-волокна и матрица, состоящие из 4-х фаз, соотношение между которыми меняется при нагреве. На этом уровне используются аналитические соотношения, предложенные ранее в работах Ю.И. Димитриенко. На следующем уровне модели рассмотрен однонаправленный композит, состоящий из пучков моноволокон и матрицы. Для расчета упругих свойств на этом уровне применяется метод асимптотического осреднения, и конечно-элементный алгоритм решения локальных задач теории термоупругости, возникающих в этом методе. На 3-м структурном уровне модели рассмотрены композиты со сложными структурами армирования, в частности тканевые композиты. Для расчета упругих свойств композита на этом уровне также применяется метод асимптотического осреднения. Для численного расчета упругих характеристик полимерных композитов при высоких температурах разработано специализированное программное обеспечение, функционирующее под управлением программного комплекса SMCM, созданного на кафедре «Вычислительная математика и математическая физика» МГТУ им. Н.Э. Баумана и в научно-образовательном центре «Суперкомпьютерное инженерное моделирование и разработка программных комплексов» МГТУ им. Н.Э. Баумана. В статье приведены примеры применения разработанной многоуровневой модели и программного обеспечения для тканевых композитов на основе эпоксидной матрицы и стеклянных волокон. Вычислены значения всех компонент тензора модулей упругости композита, меняющиеся в зависимости от программы нагрева композита. Получены поля микронапряжений в композите. Проведено сравнение полей микронапряжений и эффективных констант упругости при нормальных температурах, с аналогичными значениями, полученными с помощью программного комплекса ANSYS, который был доработан для возможности вычисления эффективных упругих констант в соответствии с предложенной моделью. Получено очень хорошее совпадение результатов расчетов, как эффективных констант, так и полей микронапряжений, что позволяет говорить о высокой точности разработанного программного обеспечения.
[1] Asgar А., Sarath Raj N.S, Thadathil J. Varghese ablative heating technology in hypersonic re-entry vehicles and cruise aircrafts. International journal of recent technology and engineering, 2019, vol. 8, iss. 3, pp. 3007–3014.
[2] Smith T.R., Bowcutt G.K., Selmon J.R., Luis M., Northrop B., Mairs R., Unger E.R., Lau K.Y., Silvester T., Alesi H., Paull A., Paull R., Dolvin D.J. HIFiRE 4: a low-cost aerodynamics, stability and control hypersonic flight experiment. Proceedings of 17th International space planes, hypersonic systems, and technologies conference (AIAA), 2011, pp. 2011–2275.
[3] Bahramian A.R., Kokabi M., Famili M.H.N., Beheshty M.H. Ablation and thermal degradation behavior of a composite based on resol type phenolic resin: Process modeling and experimental. Polymer, 2006, no. 47, pp. 3661–3673.
[4] Riccio A., Raimondo F., Sellitto A., Carandente V., Scigliano R., Tescione D. Optimum design of ablative thermal protection systems for atmospheric entry vehicle. Applied Thermal Engineering, 2017, no. 119, pp. 541–552.
[5] Lancelle D., Božić O. Simulation of an ablative thermal protection system for the hypersonic ascend of an electromagnetically launched payload carrier. Proceedings of 5th European Conference for Aeronautics and Space Sciences (EUCASS), 2013, 12 p.
[6] Eekelen T., Bouilly J.-M., Hudrisier S., Dupillier J.-M., Aspa Y. Design and numerical modelling of charring material ablators for re-entry applications. Proceedings of the Sixth European Workshop on Thermal Protection Systems and Hot Structures, Germany, 2009, European Space Agency – WPP319.
[7] Liu Z., Hao A., Zhang S., Dessureault Y.-S., Liang R. Lightweight carbon nanotube surface thermal shielding for carbon fiber/bismaleimide composites. Carbon, 2019, vol. 153, pp.320– 329. DOI: 10.1016/j.carbon.2019.07.018
[8] Димитриенко Ю.И. Механика композитных конструкций при высоких температурах. Москва, Физматлит, 2018, 448 с.
[9] Страхов В.Л., Кругов А.М., Давыдкин Н.Ф. Огнезащита строительных конструкций. Москва, ТИМР, 2000, 433 с.
[10] Акулов А.Ю., Аксенов А.В. Огнезащитное покрытие на основе минеральных термостойких заполнителей для металлоконструкций нефтегазового комплекса. Известия вузов. Нефть и газ, 2011, вып. 1, с. 66–71.
[11] Dimitrienko Yu.I. Thermomechanical behaviour of composite materials and structures under high temperatures. Part 2. Structures. Composites. Part A: Applied Science and Manufacturing, 1997, vol. 28A, рр. 463–471.
[12] Dimitrienko Yu.I. A structural thermomechanical model of textile composite materials at high temperatures. Composite science and technologies, 1999, vol. 59, pp. 1041–1053.
[13] Dimitrienko Yu.I. Modelling of mechanical properties of composite materials under high temperatures. Part 3. Textile composites. Int. Journal of Applied Composite Materials, 1998, vol. 5, № 4, рр. 257–272.
[14] Dimitrienko Yu.I., Zakharov A.A., Koryakov M.N. Coupled problems of high-speed aerodynamics and thermomechanics of heat-shielding structures. IOP Journal of Physics: Conference Series, 2018, vol 1141, art. 012094. DOI:10.1088/1742-6596/1141/1/012094
[15] Димитриенко Ю.И., Захаров А.А., Коряков М.Н., Сыздыков Е.К. Моделирование сопряженных процессов аэрогазодинамики и теплообмена на поверхности теплозащиты перспективных гиперзвуковых летательных аппаратов. Известия высших учебных заведений. Машиностроение, 2014, № 3, с. 23–34.
[16] Димитриенко Ю.И., Коряков М.Н., Захаров А.А., Строганов А.С. Численное моделирование сопряженных аэрогазодинамических и термодинамических процессов в композитных конструкциях высокоскоростных летательных аппаратов. Математическое моделирование и численные методы, 2014, № 3 (3), с. 3–24.
[17] Димитриенко Ю.И., Коряков М.Н., Захаров А.А. Разработка технологий численного моделирования сопряженных задач газовой динамики и термодинамики композитных конструкций перспективных высокоскоростных летательных аппаратов. Известия Самарского научного центра Российской академии наук, 2016, т. 18, № 2 (3), с. 891–895.
[18] Димитриенко Ю.И., Коряков М.Н., Юрин Ю.В., Захаров А.А. Конечно-элементное моделирование термонапряжений в композитных термодеструктирующих конструкциях при аэродинамическом нагреве. Математическое моделирование и численные методы, 2019, № 2 (22), с. 15–34.
[19] Димитриенко Ю.И. Кашкаров А.И. Расчет эффективных характеристик композитов с периодической структурой методом конечного элемента. Вестник МГТУ им. Н.Э. Баумана. Сер. Естественные науки, 2002, № 2, с.95–108.
[20] Димитриенко Ю.И., Луценко А.Н., Губарева Е.А., Орешко Е.И., Базылева О.А., Сборщиков С.В. Расчет механических характеристик жаропрочных интерметаллидных сплавов на основе никеля методом многомасштабного моделирования. Авиационные материалы и технологии, 2016, №3 (42), с. 33–48.
[21] Dimitrienko Yu.I., Dimitrienko I.D., Sborschikov S.V. Multiscale hierarchical modeling of fiber reinforced composites by asymptotic homogenization method. Applied mathematical sciences, 2015, vol. 9, no. 145, рр. 7211–7220.
[22] Димитриенко Ю.И. Механика сплошной среды. В 4 т. Т. 1. Тензорный анализ. Москва, Изд-во МГТУ им. Н.Э. Баумана, 2011, 367 с.
[23] Свидетельство № 2019666174 Программа HighTempETextileManipula для прогнозирования модулей упругости тканевых полимерных композитов при высоких температурах на основе конечно-элементного решения задач на ячейке периодичности: свидетельство об офиц. регистрации программы для ЭВМ / Ю.И. Димитриенко, Ю.В. Юрин, С.В. Сборщиков, И.О. Богданов; заявитель и правообладатель МГТУ им. Н.Э. Баумана – № 2019665102; заявл. 26.11.2019; зарегистрировано в реестре программ для ЭВМ 05.12.2019. – [1]
Димитриенко Ю.И., Юрин Ю.В., Сборщиков С.В., Богданов И.О., Яхновский А.Д., Баймурзин Р.Р. Конечно-элементное моделирование упругих свойств тканевых полимерных композитов при высоких температурах. Математическое моделирование и численные методы. 2020. № 1. с. 3–27
Количество скачиваний: 592