Рубрика: "2.3.1. Системный анализ, управление и обработка информации (технические науки)"



004.9:621.7 Моделирование поля температур при получении металлоизделий на литейно-ковочном модуле с односторонним воздействием бокового бойка и неподвижной плитой

Дмитриев Э. А. (ФГБОУ ВО «КнАГУ»), Потянихин Д. А. (ФГБОУ ВО «КнАГУ»), Одиноков В. И. (ФГБОУ ВО «КнАГУ»), Евстигнеев А. И. (ФГБОУ ВО «КнАГУ»), Квашнин А. Е. (ФГБОУ ВО «КнАГУ»)


doi: 10.18698/2309-3684-2022-2-6377


В работе представлена математическая постановка и приведены результаты расчетов в задаче об определении поля температуры при деформировании полосы, изготовленной из алюминиевого сплава АД0, на литейно-ковочном модуле вертикального типа новой модификации. Конструкция литейно-ковочного модуля предполагает, что из четырех стенок кристаллизатора одна неподвижна, вторая совершает вращательное движение на эксцентриковых валах, две другие совершают движение в вертикальной плоскости, обеспечивая подачу деформированной заготовки вниз. При решении задачи используется апробированный численный метод. Для движущейся среды уравнение теплопроводности записывается в конечно-разностном виде в криволинейной ортогональной системе координат. Решение задачи проводится итерационным методом. При расчете начального температурного поля и при его дальнейшем изменении учитывается теплоотвод на поверхностях контакта металла с инструментами деформирования. Результатом решения является поле температуры в пространственной области для дискретных моментов времени, соответствующих шагам численного счета. На каждом шаге определяется граница жидкого и затвердевшего металла.


Дмитриев Э.А., Потянихин Д.А., Одиноков В.И., Евстигнеев А.И., Квашин А.Е. Моделирование поля температур при получении металлоизделий на литейно-ковочном модуле с односторонним воздействием бокового бойка и неподвижной плитой. Математическое моделирование и численные методы, 2022, № 2, с. 65–79



004.942 Моделирование среды предприятия с использованием дискретных вычислительных алгоритмов

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Маркова Ю. Н. (АУ «Технопарк–Мордовия»), Занкин А. И. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2022-1-109128


В настоящее время наибольшую известность получили методы моделирования и анализа изменений экономических характеристик инновационного процесса на основе уравнений диффузии вещества в среде с заданными параметрами. Результаты анализа в этом случае существенно зависят от обеспечения точности измерения параметров среды, что не всегда достижимо на практике. Представляется целесообразным переход от парадигмы диффузии к парадигме реализации инновации, т.е. к последовательному моделированию состояний инновации, переменные и характеристики которых соответствуют принятым на практике методам измерения и контроля. При таком подходе динамика экономических состояний опытно-конструкторских работ, производства и реализации инновации представляется системами обыкновенных дифференциальных уравнений, начальные условия и коэффициенты которых зависят от параметров внутренней и внешней сред предприятия. Разработанные в статье две дискретные математические модели позволяют контролировать эти параметры с использованием практических методов измерения. Первая дискретная модель представляет собой функционал, обеспечивающий пересчёт реальных параметров внутренней среды предприятия на момент начала масштабирования инновации в коэффициенты дифференциальных уравнений и начальные условия, отражающие результаты подготовки производства. Исходная информация содержится в базе данных ERP предприятия. Вторая дискретная модель реализуется как клеточный автомат. Автоматная модель внешней среды производства может использовать данные, поддающиеся практическому измерению с помощью хорошо отработанных методов маркетинга. Полученные результаты вычислительных экспериментов подтверждают обоснованность гипотезы перехода от парадигмы модели диффузии к парадигме последовательного моделирования экономических состояний инновации.


Белов В.Ф., Гаврюшин С.С., Маркова Ю.Н., Занкин А.И. Моделирование среды предприятия с использованием дискретных вычислительных алгоритмов.Математическое моделирование и численные методы, 2022, № 1, с. 109–128



519.6 Моделирование и оптимизация управления полетом космического аппарата с орбиты Земли на орбиту Венеры с помощью ионных двигателей

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Закуражная А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-88101


В данной работе рассматривается оптимизация перелета космического аппарата с Земной орбиты на орбиту Венеры с помощью ионных двигателей. Первый полет к планете состоялся в 1961 году советской автоматической межпланетной станцией «Венера-1», которая прошла в 100 000 километрах от Венеры. Кроме этого, в 1962 году был совершен полет американской станцией «Маринер-2». Самый последний корабль, запущенный к планете, был «Венера Экспресс» Европейского космического агентства в 2005 году, который долетел до Венеры за 153 дня. При решении текущей задачи были приняты следующие допущения: рассматривается межорбитальный перелет без учета притяжения планет, а орбиты планет считаются круговыми и лежащими в одной плоскости. В качестве управления был выбран угол между касательной скоростью космического аппарата и направлением тяги. Оптимизация управления проводилась с использованием принципа максимума Понтрягина. Полученная краевая задача для системы обыкновенных дифференциальных уравнений решалась численным методом — методом пристрелки. Для решения систем нелинейных алгебраических уравнений использовался метод Ньютона. Программа расчета была написана с использованием языка программирования С++. В результате работы удалось минимизировать время перелета между орбитами, таким образом была показана работоспособность метода пристрелки для решения задач оптимизации


Мозжорина Т.Ю., Закуражная Д.А. Моделирование и оптимизация управления полетом космического аппарата с орбиты Земли на орбиту Венеры с помощью ионных двигателей. Математическое моделирование и численные методы, 2022, № 2, с. 90–103



519.87 Структурная теория сложных систем. Модельный синтез

Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2022-3-98123


В данной статье прежде всего хотелось упорядочить результаты работ автора последних двух десятков лет в области структурной теории моделирования сложных систем и практики реализации таких систем с единых позиций. На основе гуманитарного анализа ключевых свойств сложных систем, признаваемых таковыми рядом авторитетных исследователей и практиков этой области, и предположения о возможности построения математической компьютерной модели сложной системы, — гипотезы о замкнутости, — предлагается формальное определение компьютерной модели сложной системы, как рода структуры в смысле Н. Бурбаки — род структуры М (модель). Класс математических объектов, определяемый родом структуры М обладает следующими двумя свойствами: комплекс, созданный объединением конечного числа математических объектов рода структуры М по определенным правилам, сам является объектом этого рода структуры. Организация вычислительного процесса для всех математических объектов рода структуры М однотипна и поэтому может быть реализована единой универсальной программой организации имитационных вычислений. Наличие этих двух свойств у представителей рода структуры М позволяет построить сквозную технологию описания, синтеза и программной реализации моделей сложных систем — Модельный синтез и Модельно-ориентированное программирование. Изучая морфизмы базисных множеств построенной с помощью модельного синтеза модели рода структуры М, и инварианты, ограничивающие такие морфизм, мы получаем формальный математический язык исследования сложных открытых (меняющих свой состав) систем. Ведя традиционный по форме гуманитарный дискурс, можно все время соотносить его с соответствующим объектом рода структуры М — транслируя на математический язык гуманитарные понятия языка более высокого уровня. Предлагаемая теория имеет практическое применение в области разработки, описания и реализации сложных программных систем. Предлагается новая программистская парадигма —Модельно-ориентированное программирование, являющееся полной реализацией методов САПР в программировании. При разработке программной системы удается оставаться в рамках декларативного программирования, избегая императивного, что существенно упрощает как ее разработку и реализацию, так и последующую отладку.


Бродский Ю.И. Структурная теория сложных систем. Модельный синтез. Математическое моделирование и численные методы, 2022, № 3, с. 98–123.



519.2 Моделирование локально-однородных радиолокационных изображений при использовании различных статистических критериев

Достовалова А. М. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-4-103120


В статье рассмотрена задача классификации отсчетов радиолокационного изображения (РЛИ). Использовалась модель локально-однородного РЛИ, в рамках которой отсчеты каждого небольшого участка (локальной области) считались принадлежащими только одному классу. Проведено сравнение результатов классификации нескольких реальных РЛИ по локальным областям при использовании статистических критериев максимума апостериорной вероятности, Колмогорова и Крамера-Мизеса-Смирнова. При этом в случае, когда перечисленные критерии затруднялись классифицировать локальную область — при попадании ее на границу раздела подстилающих поверхностей, та считалась отнесенной к особому, граничному классу, и ее отсчеты обрабатывались с помощью сеточного метода разделения смесей вероятностных распределений. Для каждого критерия оценивалась точность классификации, как доля верно классифицированных пикселей внутри выделенных однородных областей. Установлено, что в случае значительных межклассовых различий наилучшую точность классификации обеспечивает использование наименее мощного среди непараметрических критериев-критерия Колмогорова. Также на примере реального изображения показано, что когда отличия характеристик объектов одного класса оказываются сопоставимы с межклассовыми различиями, наибольшая точность классификации достигается при использовании критерия максимума апостериорной вероятности. Подобные случаи характерны для широкого класса задач классификации, в том числе не связанных с обработкой изображений.


Достовалова А.М. Моделирование локально-однородных радиолокационных изображений при использовании различных статистических критериев. Математическое моделирование и численные методы, 2021, № 4, с. 103–120.



519.8 Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-125133


С помощью вероятностных методов предложена модель конфликта двух взаимодействующих систем, состоящих из многочисленных структурных единиц, с учетом эффекта задержки информации о взаимном состоянии: о структуре, количестве и параметрах структурных единиц друг друга. Проведено исследование влияния недостаточности информации в конкретный момент времени на исход процесса развития конфликта. Показано, что наличие информации о состоянии структурных единиц противоположной стороны может значительно увеличить вероятность успешности развития конфликта, причём при увеличении числа единиц структурных единиц разница в вероятности успешного развития сценария конфликта существенно увеличивается.


Чуев В.Ю., Дубограй И.В. Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии. Математическое моделирование и численные методы, 2023, № 3, с. 125–133



519.85 Метод нахождения недоминируемых решений в задачах декомпозиции моделей сложных систем

Киселев В. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-1-129140


В статье рассматривается метод нахождения оптимальных решений, при наличии модели сложной технической системы, в задаче оптимального проектирования. Метод основан на использовании недоминируемых, лямбда оптимальных решений и является обобщением метода Краснощекова П.С., Морозова В.В., Федорова В.В. [1]. Метод позволяет во многих случаях (для лямбда монотонных целевых функций) сократить количество вычислений и снизить размерность исходной задачи. Разработан численный метод построения лямбда оптимальных решений. Приводится численный пример, в котором показано,что количество лямбда оптимальных решений состоит из одной точки, а множество Парето-оптимальных решений является некоторой кривой, на которой для нахождения оптимального решения необходимо строить эпсилон-сеть.


Киселев В.В. Метод нахождения недоминируемых решений в задачах декомпозиции моделей сложных систем. Математическое моделирование и численные методы, 2022, № 1, с. 129–140.



519.2.214 Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывно-дискретной фильтрации случайных процессов в реальном времени

Валишин А. А. (МГТУ им.Н.Э.Баумана), Запривода А. В. (МГТУ им.Н.Э.Баумана), Клонов А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-93109


При развитии методов прогнозирования существенное значение приобретает исключение из исходной информации и исследуемых процессов случайных эффектов. Эти эффекты связаны не только с невозможностью учета всех факторов, но и с тем, что часть из них нередко совсем не принимаются во внимание. Не стоит забывать и про случайные погрешности измерений. В прогнозируемых величинах вследствие указанных эффектов создается некий случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, повысить достоверность и оправдываемость прогнозов. В статье рассмотрены принципы фильтрации данных в масштабе реального времени. Приводится постановка задачи, а также основные критерии оценок, которые должны выполняться для получения удовлетворительного результата. Разбирается принцип работы двух наиболее распространённых видов фильтров – абсолютно оптимальных и условно оптимальных, описываются их достоинства и недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с двумя датчиками. Представлены некоторые выводы и рекомендации о том, в каких случаях лучше использовать тот или иной фильтр.


Валишин А.А., Запривода А.В., Клонов А.С. Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывнодискретной фильтрации случайных процессов в реальном времени. Математическое моделирование и численные методы, 2024, № 1, с. 93–109.



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



<< 2