Рубрика: "2.3.1. Системный анализ, управление и обработка информации (технические науки)"



519.87 Структурная теория сложных систем. Геометрическая теория и гуманитарные аспекты моделирования

Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2022-4-93113


Предлагается формальное определение компьютерной модели сложной системы, как рода структуры в смысле Н. Бурбаки — род структуры M (модель). Класс математических объектов, определяемый родом структуры M обладает следующими двумя свойствами: комплекс, созданный объединением математических объектов рода структуры M по определенным правилам, сам является математическим объектом рода структуры M. Организация вычислительного процесса для всех математических объектов рода структуры M однотипна и поэтому может быть реализована единой универсальной программой организации имитационных вычислений. Наличие этих двух свойств у представителей рода структуры M позволяет построить сквозную технологию описания, синтеза и программной реализации моделей сложных систем — Модельный синтез и Модельно-ориентированное программирование. Изучая морфизмы базисных множеств построенной с помощью модельного синтеза модели рода структуры M, и инварианты, ограничивающие такие морфизм, мы получаем формальный математический язык исследования сложных открытых (меняющих свой состав) систем. Ведя традиционный по форме гуманитарный дискурс, можно все время соотносить его с соответствующим объектом рода структуры M — транслируя на математический язык гуманитарные понятия языка более высокого уровня. Выводами, полученными с помощью этого языка, является, например, то, что устойчивое развитие есть modus vivendi сложной открытой системы и что в сложных открытых системах, в отличие от замкнутых физических систем, ведущую роль играет сохранение законов (система жертвует мощность на поддержание своих аксиом и структуры), а не законы сохранения (которые конечно же имеют место).


Бродский Ю.И. Структурная теория сложных систем. Геометрическая теория и гуманитарные ас-пекты моделирования. Математическое моделирование и численные методы, 2022, № 4, с. 93–113.



519.6 Моделирование и оптимизация управления полетом космического аппарата с орбиты Земли на орбиту Венеры с помощью ионных двигателей

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Закуражная А. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-2-88101


В данной работе рассматривается оптимизация перелета космического аппарата с Земной орбиты на орбиту Венеры с помощью ионных двигателей. Первый полет к планете состоялся в 1961 году советской автоматической межпланетной станцией «Венера-1», которая прошла в 100 000 километрах от Венеры. Кроме этого, в 1962 году был совершен полет американской станцией «Маринер-2». Самый последний корабль, запущенный к планете, был «Венера Экспресс» Европейского космического агентства в 2005 году, который долетел до Венеры за 153 дня. При решении текущей задачи были приняты следующие допущения: рассматривается межорбитальный перелет без учета притяжения планет, а орбиты планет считаются круговыми и лежащими в одной плоскости. В качестве управления был выбран угол между касательной скоростью космического аппарата и направлением тяги. Оптимизация управления проводилась с использованием принципа максимума Понтрягина. Полученная краевая задача для системы обыкновенных дифференциальных уравнений решалась численным методом — методом пристрелки. Для решения систем нелинейных алгебраических уравнений использовался метод Ньютона. Программа расчета была написана с использованием языка программирования С++. В результате работы удалось минимизировать время перелета между орбитами, таким образом была показана работоспособность метода пристрелки для решения задач оптимизации


Мозжорина Т.Ю., Закуражная Д.А. Моделирование и оптимизация управления полетом космического аппарата с орбиты Земли на орбиту Венеры с помощью ионных двигателей. Математическое моделирование и численные методы, 2022, № 2, с. 90–103



001.4+001.8+001.9 Индекс подобия математических и других научных публикаций с уравнениями и формулами и проблема идентификации самоплагиата

Полянин А. Д. (Институт проблем механики им. А.Ю. Ишлинского РАН), Шингарева И. К. (Университет Соноры)


doi: 10.18698/2309-3684-2021-2-96116


Впервые обсуждаются проблемы оценки индекса подобия неоднородных научных публикаций, содержащих уравнения и формулы. Показано, что наличие уравнений и формул (а также графиков, рисунков и таблиц) является осложняющим фактором, существенно затрудняющим исследование таких текстов. Доказано, что метод определения индекса подобия публикаций, основанный на учете отдельных математических символов и частей уравнений и формул, является неэффективным и может приводить к ошибочным и даже совершенно абсурдным выводам. Исследуются возможности наиболее популярных аналитических систем Антиплагиат и iThenticate, используемых в настоящее время в научных журналах для выявления плагиата и самоплагиата. Приведены результаты обработки системой iThenticate конкретных примеров и специальных тестовых задач, содержащих уравнения и формулы. Установлено, что эта аналитическая система при анализе неоднородных текстов часто неспособна отличить самоплагиат от псевдосамоплагиата — кажущегося (ложного, мнимого) самоплагиата. Рассмотрена модельная сложная ситуация, в которой идентификация самоплагиата требует привлечения высококвалифицированных специалистов узкого профиля. Предлагаются различные пути улучшения работы аналитических систем сопоставления неоднородных текстов. Данная статья будет полезна научным работникам и преподавателям вузов физико–математического и инженерного профиля, программистам, занимающимся проблемой распознавания образов и вопросами цифровой обработки изображений, а также широкому кругу читателей, которые интересуются вопросами плагиата и самоплагиата.


Полянин А.Д., Шингарева И.К. Индекс подобия математических и других научных публикаций с уравнениями и формулами и проблема идентификации самоплагиата. Математическое моделирование и численные методы, 2021, № 2, с. 96–116.



330.43, 519.23 Динамика макроэкономических показателей и взаимной торговли стран БРИКС и США

Малинецкий Г. Г. (Институт прикладной математики им. М.В. Келдыша РАН), Махов С. А. (Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2023-1-112123


Целью исследования является прогнозирование основных тенденций и построение сценариев экономического развития стран БРИКС (Бразилии, Индии, Китая, России, ЮАР) и США. Построены автономные регрессионные макромодели, а также модель торговли между ними. В автономных подмоделях в качестве основных показателей используются численность населения, основной капитал, валовой внутренний продукт и вложения в основные фонды. Для описания динамики этих переменных были составлены авторегрессионные уравнения. Полученная система уравнений позволила описать историческую динамику демографических и макроэкономических индикаторов с 1990 по 2019 гг. и построить прогноз до 2030 г. Подмодель торговли позволила связать двусторонние торговые потоки с валовыми внутренними продуктами исследуемых экономик. Связь описывается степенной зависимостью экспортного потока от валового внутреннего продукта обоих торговых партнеров. В отличие от моделей гравитационного типа, параметры регрессионных уравнений считаются постоянными для каждой пары торговых партнеров в течение всего прогнозируемого временного промежутка. Проведенные расчеты показали, что модели удовлетворительно описывают динамику монотонно меняющихся показателей и могут использоваться в качестве простого инструментария для прогнозирования национальной и региональной экономики.


Малинецкий Г.Г., Махов С.А. Динамика макроэкономических показателей и взаимной торговли стран БРИКС и США. Математическое моделирование и численные методы, 2023, No 1, с. 112–123.



519.6 Моделирование и оптимизация перелета спутников малой массы с Земной орбиты на орбиту Марса с помощью ионных двигателей

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Чуванова Л. О. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-5467


В данной работе рассматривается оптимизация перелета спутника малой массы с Земной орбиты на орбиту Марса с использованием ионных двигателей. Ионный двигатель позволяет минимизировать расход топлива и разогнать космический аппарат до довольно высоких скоростей вдали от планет солнечной системы. Рассмотрению подлежит гелиоцентрический участок полета. Ставится задача минимизации времени перелета. В работе приняты следующие допущения: орбиты Земли и Марса являются круговыми и лежащими в одной плоскости. В качестве управления выбирается угол между тангенциальной скоростью космического аппарата в гелиоцентрической системе и направлением действия тяги. При составлении алгоритма оптимизации использован принцип максимума Понтрягина, который приводит задачу оптимизации функционала к краевой задаче для системы обыкновенных дифференциальных уравнений. Решение краевой задачи найдено одним из численных методов — методом пристрелки, дающим наиболее точные результаты. Проведен анализ полученных результатов и проведено сравнение с данными, полученными ранее в подобных расчетах зарубежными авторами другим численным методом решения. Делается вывод о работоспособности метода пристрелки при решении подобных задач.


Мозжорина Т.Ю., Чуванова Л.О. Моделирование и оптимизация перелета спутников малой массы с Земной орбиты на орбиту Марса с помощью ионных двигателей. Математическое моделирование и численные методы, 2021, № 2, с. 54–67.



519.866 Математическое моделирование рекламной кампании

Чибисова А. В. (МГТУ им.Н.Э.Баумана), Шинаков Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-3-8497


В данной статье предлагается метод оптимизации динамической политики распределения бюджета для рекламной кампании, размещаемой через встроенный в поисковик рекламный инструмент. Данный метод учитывает уникальные особенности маркетинга в социальных сетях, обеспечивает оптимальную политику распределения бюджета с течением времени для одной рекламной кампании и минимизирует продолжительность кампании, учитывая конкретный бюджет и желаемый уровень охвата каждого маркетингового сегмента. Модель включает в себя общую "функцию эффективности", которая определяет взаимосвязь между стоимостью рекламной ставки в данный момент времени и количеством новых пользователей, показанных в это время. Поставленная цель достигается за счет реализации алгоритма оптимального решения задачи динамического распределения рекламного бюджета при некоторых граничных условиях, а также за счёт анализа данных о рекламной кампании предприятия за июнь 2018 года. В ходе исследования был реализован алгоритм оптимального решения задачи динамического распределения рекламного бюджета при соответствующих граничных условиях, были приведены примеры конкретных случаев функции эффективности и разобраны некоторые модели реальных рекламных кампаний предприятия. Затем, были проанализированы данные, зарегистрированные рекламным агентством конкретного предприятия в отношении рекламной кампании, зарегистрированной с помощью встроенного в поисковик инструмента подсчёта ставок и охвата аудитории в течение 30 дней.


Чибисова А.В., Шинаков Д.С. Математическое моделирование рекламной кампании. Математическое моделирование и численные методы, 2022, № 3, с. 84–97.



519.8 Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-125133


С помощью вероятностных методов предложена модель конфликта двух взаимодействующих систем, состоящих из многочисленных структурных единиц, с учетом эффекта задержки информации о взаимном состоянии: о структуре, количестве и параметрах структурных единиц друг друга. Проведено исследование влияния недостаточности информации в конкретный момент времени на исход процесса развития конфликта. Показано, что наличие информации о состоянии структурных единиц противоположной стороны может значительно увеличить вероятность успешности развития конфликта, причём при увеличении числа единиц структурных единиц разница в вероятности успешного развития сценария конфликта существенно увеличивается.


Чуев В.Ю., Дубограй И.В. Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии. Математическое моделирование и численные методы, 2023, № 3, с. 125–133



519.8 Стохастическая модель боевых действий однотипных боевых единиц против разнотипных

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-8695


На основе теории непрерывных марковских процессов разработана модель двухстороннего боя двух однотипных боевых единиц стороны X против двух разнотипных единиц противника. Получены расчётные формулы для вычисления текущих и окончательных состояний при различных тактиках ведения боя стороной Х. Разработанная модель двухстороннего боя может быть использована для оценки боевой эффективности многоцелевых комплексов вооружения.


Чуев В.Ю., Дубограй И.В. Стохастическая модель боевых действий однотипных боевых единиц против разнотипных. Математическое моделирование и численные методы, 2021, № 2, с. 86–95.



519.2.214 Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывно-дискретной фильтрации случайных процессов в реальном времени

Валишин А. А. (МГТУ им.Н.Э.Баумана), Запривода А. В. (МГТУ им.Н.Э.Баумана), Клонов А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-93109


При развитии методов прогнозирования существенное значение приобретает исключение из исходной информации и исследуемых процессов случайных эффектов. Эти эффекты связаны не только с невозможностью учета всех факторов, но и с тем, что часть из них нередко совсем не принимаются во внимание. Не стоит забывать и про случайные погрешности измерений. В прогнозируемых величинах вследствие указанных эффектов создается некий случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, повысить достоверность и оправдываемость прогнозов. В статье рассмотрены принципы фильтрации данных в масштабе реального времени. Приводится постановка задачи, а также основные критерии оценок, которые должны выполняться для получения удовлетворительного результата. Разбирается принцип работы двух наиболее распространённых видов фильтров – абсолютно оптимальных и условно оптимальных, описываются их достоинства и недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с двумя датчиками. Представлены некоторые выводы и рекомендации о том, в каких случаях лучше использовать тот или иной фильтр.


Валишин А.А., Запривода А.В., Клонов А.С. Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывнодискретной фильтрации случайных процессов в реальном времени. Математическое моделирование и численные методы, 2024, № 1, с. 93–109.



<< 2