Рубрика: "2.3.1. Системный анализ, управление и обработка информации (технические науки)"



519.87 Структурная теория сложных систем. Геометрическая теория и гуманитарные аспекты моделирования

Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2022-4-93113


Предлагается формальное определение компьютерной модели сложной системы, как рода структуры в смысле Н. Бурбаки — род структуры M (модель). Класс математических объектов, определяемый родом структуры M обладает следующими двумя свойствами: комплекс, созданный объединением математических объектов рода структуры M по определенным правилам, сам является математическим объектом рода структуры M. Организация вычислительного процесса для всех математических объектов рода структуры M однотипна и поэтому может быть реализована единой универсальной программой организации имитационных вычислений. Наличие этих двух свойств у представителей рода структуры M позволяет построить сквозную технологию описания, синтеза и программной реализации моделей сложных систем — Модельный синтез и Модельно-ориентированное программирование. Изучая морфизмы базисных множеств построенной с помощью модельного синтеза модели рода структуры M, и инварианты, ограничивающие такие морфизм, мы получаем формальный математический язык исследования сложных открытых (меняющих свой состав) систем. Ведя традиционный по форме гуманитарный дискурс, можно все время соотносить его с соответствующим объектом рода структуры M — транслируя на математический язык гуманитарные понятия языка более высокого уровня. Выводами, полученными с помощью этого языка, является, например, то, что устойчивое развитие есть modus vivendi сложной открытой системы и что в сложных открытых системах, в отличие от замкнутых физических систем, ведущую роль играет сохранение законов (система жертвует мощность на поддержание своих аксиом и структуры), а не законы сохранения (которые конечно же имеют место).


Бродский Ю.И. Структурная теория сложных систем. Геометрическая теория и гуманитарные ас-пекты моделирования. Математическое моделирование и численные методы, 2022, № 4, с. 93–113.



004.9:621.7 Моделирование поля температур при получении металлоизделий на литейно-ковочном модуле с односторонним воздействием бокового бойка и неподвижной плитой

Дмитриев Э. А. (ФГБОУ ВО «КнАГУ»), Потянихин Д. А. (ФГБОУ ВО «КнАГУ»), Одиноков В. И. (ФГБОУ ВО «КнАГУ»), Евстигнеев А. И. (ФГБОУ ВО «КнАГУ»), Квашнин А. Е. (ФГБОУ ВО «КнАГУ»)


doi: 10.18698/2309-3684-2022-2-6377


В работе представлена математическая постановка и приведены результаты расчетов в задаче об определении поля температуры при деформировании полосы, изготовленной из алюминиевого сплава АД0, на литейно-ковочном модуле вертикального типа новой модификации. Конструкция литейно-ковочного модуля предполагает, что из четырех стенок кристаллизатора одна неподвижна, вторая совершает вращательное движение на эксцентриковых валах, две другие совершают движение в вертикальной плоскости, обеспечивая подачу деформированной заготовки вниз. При решении задачи используется апробированный численный метод. Для движущейся среды уравнение теплопроводности записывается в конечно-разностном виде в криволинейной ортогональной системе координат. Решение задачи проводится итерационным методом. При расчете начального температурного поля и при его дальнейшем изменении учитывается теплоотвод на поверхностях контакта металла с инструментами деформирования. Результатом решения является поле температуры в пространственной области для дискретных моментов времени, соответствующих шагам численного счета. На каждом шаге определяется граница жидкого и затвердевшего металла.


Дмитриев Э.А., Потянихин Д.А., Одиноков В.И., Евстигнеев А.И., Квашин А.Е. Моделирование поля температур при получении металлоизделий на литейно-ковочном модуле с односторонним воздействием бокового бойка и неподвижной плитой. Математическое моделирование и численные методы, 2022, № 2, с. 65–79



519.2.214 Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывно-дискретной фильтрации случайных процессов в реальном времени

Валишин А. А. (МГТУ им.Н.Э.Баумана), Запривода А. В. (МГТУ им.Н.Э.Баумана), Клонов А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2024-1-93109


При развитии методов прогнозирования существенное значение приобретает исключение из исходной информации и исследуемых процессов случайных эффектов. Эти эффекты связаны не только с невозможностью учета всех факторов, но и с тем, что часть из них нередко совсем не принимаются во внимание. Не стоит забывать и про случайные погрешности измерений. В прогнозируемых величинах вследствие указанных эффектов создается некий случайный фон или «шум». Фильтрация (исключение) шумов должна, естественно, повысить достоверность и оправдываемость прогнозов. В статье рассмотрены принципы фильтрации данных в масштабе реального времени. Приводится постановка задачи, а также основные критерии оценок, которые должны выполняться для получения удовлетворительного результата. Разбирается принцип работы двух наиболее распространённых видов фильтров – абсолютно оптимальных и условно оптимальных, описываются их достоинства и недостатки. Рассмотрено применение фильтров Калмана и Пугачева к модели с двумя датчиками. Представлены некоторые выводы и рекомендации о том, в каких случаях лучше использовать тот или иной фильтр.


Валишин А.А., Запривода А.В., Клонов А.С. Математическое моделирование и сравнительный анализ численных методов решения задачи непрерывнодискретной фильтрации случайных процессов в реальном времени. Математическое моделирование и численные методы, 2024, № 1, с. 93–109.



004.85:551.5051 Методы интеллектуального анализа данных в модели наукастинга опасных явлений

Шершакова А. О. (МГТУ им.Н.Э.Баумана), Пархоменко В. П. (МГТУ им.Н.Э.Баумана/ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2021-3-88104


Настоящая работа посвящена исследованию и применению методов интеллектуального анализа для реализации схемы наукастинга опасных явлений. В ходе работы были сформированы большие наборы данных на основе метеорологических наблюдений облачных ячеек, отличающиеся методами обработки информации для их подготовки. Для каждого набора был построен ряд математических моделей классификации облачных ячеек по степени опасности формирования из них смерчей. В качестве основного языка разработки выбран язык программирования Python. Работа имеет большое практическое значение в сфере прогнозирования погодных явлений. Ее новизна заключается в использовании современной методологии машинного обучения вместо традиционного подхода экстраполяции данных, широко применяемого в различных схемах наукастинга.


Шершакова А.О., Пархоменко В.П. Методы интеллектуального анализа данных в модели наукастинга опасных явлений. Математическое моделирование и численные методы, 2021, № 3, с. 88–104.



519.866 Математическое моделирование рекламной кампании

Чибисова А. В. (МГТУ им.Н.Э.Баумана), Шинаков Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-3-8497


В данной статье предлагается метод оптимизации динамической политики распределения бюджета для рекламной кампании, размещаемой через встроенный в поисковик рекламный инструмент. Данный метод учитывает уникальные особенности маркетинга в социальных сетях, обеспечивает оптимальную политику распределения бюджета с течением времени для одной рекламной кампании и минимизирует продолжительность кампании, учитывая конкретный бюджет и желаемый уровень охвата каждого маркетингового сегмента. Модель включает в себя общую "функцию эффективности", которая определяет взаимосвязь между стоимостью рекламной ставки в данный момент времени и количеством новых пользователей, показанных в это время. Поставленная цель достигается за счет реализации алгоритма оптимального решения задачи динамического распределения рекламного бюджета при некоторых граничных условиях, а также за счёт анализа данных о рекламной кампании предприятия за июнь 2018 года. В ходе исследования был реализован алгоритм оптимального решения задачи динамического распределения рекламного бюджета при соответствующих граничных условиях, были приведены примеры конкретных случаев функции эффективности и разобраны некоторые модели реальных рекламных кампаний предприятия. Затем, были проанализированы данные, зарегистрированные рекламным агентством конкретного предприятия в отношении рекламной кампании, зарегистрированной с помощью встроенного в поисковик инструмента подсчёта ставок и охвата аудитории в течение 30 дней.


Чибисова А.В., Шинаков Д.С. Математическое моделирование рекламной кампании. Математическое моделирование и численные методы, 2022, № 3, с. 84–97.



519.87 Структурная теория сложных систем. Модельный синтез

Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2022-3-98123


В данной статье прежде всего хотелось упорядочить результаты работ автора последних двух десятков лет в области структурной теории моделирования сложных систем и практики реализации таких систем с единых позиций. На основе гуманитарного анализа ключевых свойств сложных систем, признаваемых таковыми рядом авторитетных исследователей и практиков этой области, и предположения о возможности построения математической компьютерной модели сложной системы, — гипотезы о замкнутости, — предлагается формальное определение компьютерной модели сложной системы, как рода структуры в смысле Н. Бурбаки — род структуры М (модель). Класс математических объектов, определяемый родом структуры М обладает следующими двумя свойствами: комплекс, созданный объединением конечного числа математических объектов рода структуры М по определенным правилам, сам является объектом этого рода структуры. Организация вычислительного процесса для всех математических объектов рода структуры М однотипна и поэтому может быть реализована единой универсальной программой организации имитационных вычислений. Наличие этих двух свойств у представителей рода структуры М позволяет построить сквозную технологию описания, синтеза и программной реализации моделей сложных систем — Модельный синтез и Модельно-ориентированное программирование. Изучая морфизмы базисных множеств построенной с помощью модельного синтеза модели рода структуры М, и инварианты, ограничивающие такие морфизм, мы получаем формальный математический язык исследования сложных открытых (меняющих свой состав) систем. Ведя традиционный по форме гуманитарный дискурс, можно все время соотносить его с соответствующим объектом рода структуры М — транслируя на математический язык гуманитарные понятия языка более высокого уровня. Предлагаемая теория имеет практическое применение в области разработки, описания и реализации сложных программных систем. Предлагается новая программистская парадигма —Модельно-ориентированное программирование, являющееся полной реализацией методов САПР в программировании. При разработке программной системы удается оставаться в рамках декларативного программирования, избегая императивного, что существенно упрощает как ее разработку и реализацию, так и последующую отладку.


Бродский Ю.И. Структурная теория сложных систем. Модельный синтез. Математическое моделирование и численные методы, 2022, № 3, с. 98–123.



519.866 Математическое моделирование стратегической рекламной кампании

Чибисова А. В. (МГТУ им.Н.Э.Баумана), Шинаков Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-4-109121


В данной статье предлагается создать модель прибыли для обычного рекламодателя, который будет размещать рекламу на видеоплатформе. Видеоплатформы предоставляют услуги видеоконтента для удовлетворения потребностей пользователей в развлечениях, а также рекламные площади для удовлетворения потребностей рекламодателей в получении прибыли. При просмотре видео потребители могут получить воспринимаемую полезность, удовлетворив свою потребность в развлечениях и любопытстве. Например, люди смотрят телевизионные торговые каналы, чтобы купить или узнать о товарах; чистая полезность рекламы для таких пользователей положительна. Тем не менее включение рекламы может негативно влиять на некоторых потребителей, тем самым снижая их полезность. Например, пользователям может надоесть видео-реклама вследствие незаинтересованности. Следовательно, взаимосвязь между продолжительностью видео и рекламы является ключевым фактором, влияющим на воспринимаемую потребителями полезность. В данной работе мы исследуем связь между продолжительностью рекламного ролика и прибылью рекламодателя на рынке короткой видео-рекламы.


Чибисова А.В., Шинаков Д.С. Математическое моделирование стратегической рекламной кампании. Математическое моделирование и численные методы, 2023, № 4, с. 109-121.



519.8 Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-125133


С помощью вероятностных методов предложена модель конфликта двух взаимодействующих систем, состоящих из многочисленных структурных единиц, с учетом эффекта задержки информации о взаимном состоянии: о структуре, количестве и параметрах структурных единиц друг друга. Проведено исследование влияния недостаточности информации в конкретный момент времени на исход процесса развития конфликта. Показано, что наличие информации о состоянии структурных единиц противоположной стороны может значительно увеличить вероятность успешности развития конфликта, причём при увеличении числа единиц структурных единиц разница в вероятности успешного развития сценария конфликта существенно увеличивается.


Чуев В.Ю., Дубограй И.В. Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии. Математическое моделирование и численные методы, 2023, № 3, с. 125–133



519.2 Численное исследование персистентных временных рядов на основе модели ARFIMA

Облакова Т. В. (МГТУ им.Н.Э.Баумана), Касупович Э. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2022-4-114125


Работа посвящена методам обнаружения долговременной памяти в финансовых временных рядах. Методом R/S анализа с помощью оригинального программного кода исследован ряд значений реального финансового индекса S&P500, получены оценки показателя Херста, продемонстрировано наличие персистентности. Для решения задачи прогнозирования будущих значений ряда предложена модель ARFIMA, представляющая собой обобщение стандартной модели ARIMA и предполагающая использование оператора дробного дифференцирования. Изложен и реализован двухэтапный алгоритм построения прогноза для ряда логарифмических прибылей. Показано, что применение модели ARFIMA улучшает качество прогноза в сравнении с ARIMA по всем стандартным метрикам.


Облакова Т.В., Касупович Э. Численное исследование персистентных временных рядов на основе модели ARFIMA. Математическое моделирование и численные методы, 2022, № 4, с. 114–125.



<< 2