Рубрика: "2.3.1. Системный анализ, управление и обработка информации (технические науки)"



519.6 Моделирование и оптимизация перелета спутников малой массы с Земной орбиты на орбиту Марса с помощью ионных двигателей

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Чуванова Л. О. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-5467


В данной работе рассматривается оптимизация перелета спутника малой массы с Земной орбиты на орбиту Марса с использованием ионных двигателей. Ионный двигатель позволяет минимизировать расход топлива и разогнать космический аппарат до довольно высоких скоростей вдали от планет солнечной системы. Рассмотрению подлежит гелиоцентрический участок полета. Ставится задача минимизации времени перелета. В работе приняты следующие допущения: орбиты Земли и Марса являются круговыми и лежащими в одной плоскости. В качестве управления выбирается угол между тангенциальной скоростью космического аппарата в гелиоцентрической системе и направлением действия тяги. При составлении алгоритма оптимизации использован принцип максимума Понтрягина, который приводит задачу оптимизации функционала к краевой задаче для системы обыкновенных дифференциальных уравнений. Решение краевой задачи найдено одним из численных методов — методом пристрелки, дающим наиболее точные результаты. Проведен анализ полученных результатов и проведено сравнение с данными, полученными ранее в подобных расчетах зарубежными авторами другим численным методом решения. Делается вывод о работоспособности метода пристрелки при решении подобных задач.


Мозжорина Т.Ю., Чуванова Л.О. Моделирование и оптимизация перелета спутников малой массы с Земной орбиты на орбиту Марса с помощью ионных двигателей. Математическое моделирование и численные методы, 2021, № 2, с. 54–67.



330.43, 519.23 Динамика макроэкономических показателей и взаимной торговли стран БРИКС и США

Малинецкий Г. Г. (Институт прикладной математики им. М.В. Келдыша РАН), Махов С. А. (Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2023-1-112123


Целью исследования является прогнозирование основных тенденций и построение сценариев экономического развития стран БРИКС (Бразилии, Индии, Китая, России, ЮАР) и США. Построены автономные регрессионные макромодели, а также модель торговли между ними. В автономных подмоделях в качестве основных показателей используются численность населения, основной капитал, валовой внутренний продукт и вложения в основные фонды. Для описания динамики этих переменных были составлены авторегрессионные уравнения. Полученная система уравнений позволила описать историческую динамику демографических и макроэкономических индикаторов с 1990 по 2019 гг. и построить прогноз до 2030 г. Подмодель торговли позволила связать двусторонние торговые потоки с валовыми внутренними продуктами исследуемых экономик. Связь описывается степенной зависимостью экспортного потока от валового внутреннего продукта обоих торговых партнеров. В отличие от моделей гравитационного типа, параметры регрессионных уравнений считаются постоянными для каждой пары торговых партнеров в течение всего прогнозируемого временного промежутка. Проведенные расчеты показали, что модели удовлетворительно описывают динамику монотонно меняющихся показателей и могут использоваться в качестве простого инструментария для прогнозирования национальной и региональной экономики.


Малинецкий Г.Г., Махов С.А. Динамика макроэкономических показателей и взаимной торговли стран БРИКС и США. Математическое моделирование и численные методы, 2023, No 1, с. 112–123.



519.2 Моделирование локально-однородных радиолокационных изображений при использовании различных статистических критериев

Достовалова А. М. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-4-103120


В статье рассмотрена задача классификации отсчетов радиолокационного изображения (РЛИ). Использовалась модель локально-однородного РЛИ, в рамках которой отсчеты каждого небольшого участка (локальной области) считались принадлежащими только одному классу. Проведено сравнение результатов классификации нескольких реальных РЛИ по локальным областям при использовании статистических критериев максимума апостериорной вероятности, Колмогорова и Крамера-Мизеса-Смирнова. При этом в случае, когда перечисленные критерии затруднялись классифицировать локальную область — при попадании ее на границу раздела подстилающих поверхностей, та считалась отнесенной к особому, граничному классу, и ее отсчеты обрабатывались с помощью сеточного метода разделения смесей вероятностных распределений. Для каждого критерия оценивалась точность классификации, как доля верно классифицированных пикселей внутри выделенных однородных областей. Установлено, что в случае значительных межклассовых различий наилучшую точность классификации обеспечивает использование наименее мощного среди непараметрических критериев-критерия Колмогорова. Также на примере реального изображения показано, что когда отличия характеристик объектов одного класса оказываются сопоставимы с межклассовыми различиями, наибольшая точность классификации достигается при использовании критерия максимума апостериорной вероятности. Подобные случаи характерны для широкого класса задач классификации, в том числе не связанных с обработкой изображений.


Достовалова А.М. Моделирование локально-однородных радиолокационных изображений при использовании различных статистических критериев. Математическое моделирование и численные методы, 2021, № 4, с. 103–120.



519.8 Стохастическая модель боевых действий однотипных боевых единиц против разнотипных

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-8695


На основе теории непрерывных марковских процессов разработана модель двухстороннего боя двух однотипных боевых единиц стороны X против двух разнотипных единиц противника. Получены расчётные формулы для вычисления текущих и окончательных состояний при различных тактиках ведения боя стороной Х. Разработанная модель двухстороннего боя может быть использована для оценки боевой эффективности многоцелевых комплексов вооружения.


Чуев В.Ю., Дубограй И.В. Стохастическая модель боевых действий однотипных боевых единиц против разнотипных. Математическое моделирование и численные методы, 2021, № 2, с. 86–95.



001.4+001.8+001.9 Индекс подобия математических и других научных публикаций с уравнениями и формулами и проблема идентификации самоплагиата

Полянин А. Д. (Институт проблем механики им. А.Ю. Ишлинского РАН), Шингарева И. К. (Университет Соноры)


doi: 10.18698/2309-3684-2021-2-96116


Впервые обсуждаются проблемы оценки индекса подобия неоднородных научных публикаций, содержащих уравнения и формулы. Показано, что наличие уравнений и формул (а также графиков, рисунков и таблиц) является осложняющим фактором, существенно затрудняющим исследование таких текстов. Доказано, что метод определения индекса подобия публикаций, основанный на учете отдельных математических символов и частей уравнений и формул, является неэффективным и может приводить к ошибочным и даже совершенно абсурдным выводам. Исследуются возможности наиболее популярных аналитических систем Антиплагиат и iThenticate, используемых в настоящее время в научных журналах для выявления плагиата и самоплагиата. Приведены результаты обработки системой iThenticate конкретных примеров и специальных тестовых задач, содержащих уравнения и формулы. Установлено, что эта аналитическая система при анализе неоднородных текстов часто неспособна отличить самоплагиат от псевдосамоплагиата — кажущегося (ложного, мнимого) самоплагиата. Рассмотрена модельная сложная ситуация, в которой идентификация самоплагиата требует привлечения высококвалифицированных специалистов узкого профиля. Предлагаются различные пути улучшения работы аналитических систем сопоставления неоднородных текстов. Данная статья будет полезна научным работникам и преподавателям вузов физико–математического и инженерного профиля, программистам, занимающимся проблемой распознавания образов и вопросами цифровой обработки изображений, а также широкому кругу читателей, которые интересуются вопросами плагиата и самоплагиата.


Полянин А.Д., Шингарева И.К. Индекс подобия математических и других научных публикаций с уравнениями и формулами и проблема идентификации самоплагиата. Математическое моделирование и численные методы, 2021, № 2, с. 96–116.



004.942 Моделирование среды предприятия с использованием дискретных вычислительных алгоритмов

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Маркова Ю. Н. (АУ «Технопарк–Мордовия»), Занкин А. И. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2022-1-109128


В настоящее время наибольшую известность получили методы моделирования и анализа изменений экономических характеристик инновационного процесса на основе уравнений диффузии вещества в среде с заданными параметрами. Результаты анализа в этом случае существенно зависят от обеспечения точности измерения параметров среды, что не всегда достижимо на практике. Представляется целесообразным переход от парадигмы диффузии к парадигме реализации инновации, т.е. к последовательному моделированию состояний инновации, переменные и характеристики которых соответствуют принятым на практике методам измерения и контроля. При таком подходе динамика экономических состояний опытно-конструкторских работ, производства и реализации инновации представляется системами обыкновенных дифференциальных уравнений, начальные условия и коэффициенты которых зависят от параметров внутренней и внешней сред предприятия. Разработанные в статье две дискретные математические модели позволяют контролировать эти параметры с использованием практических методов измерения. Первая дискретная модель представляет собой функционал, обеспечивающий пересчёт реальных параметров внутренней среды предприятия на момент начала масштабирования инновации в коэффициенты дифференциальных уравнений и начальные условия, отражающие результаты подготовки производства. Исходная информация содержится в базе данных ERP предприятия. Вторая дискретная модель реализуется как клеточный автомат. Автоматная модель внешней среды производства может использовать данные, поддающиеся практическому измерению с помощью хорошо отработанных методов маркетинга. Полученные результаты вычислительных экспериментов подтверждают обоснованность гипотезы перехода от парадигмы модели диффузии к парадигме последовательного моделирования экономических состояний инновации.


Белов В.Ф., Гаврюшин С.С., Маркова Ю.Н., Занкин А.И. Моделирование среды предприятия с использованием дискретных вычислительных алгоритмов.Математическое моделирование и численные методы, 2022, № 1, с. 109–128



519.8 Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-125133


С помощью вероятностных методов предложена модель конфликта двух взаимодействующих систем, состоящих из многочисленных структурных единиц, с учетом эффекта задержки информации о взаимном состоянии: о структуре, количестве и параметрах структурных единиц друг друга. Проведено исследование влияния недостаточности информации в конкретный момент времени на исход процесса развития конфликта. Показано, что наличие информации о состоянии структурных единиц противоположной стороны может значительно увеличить вероятность успешности развития конфликта, причём при увеличении числа единиц структурных единиц разница в вероятности успешного развития сценария конфликта существенно увеличивается.


Чуев В.Ю., Дубограй И.В. Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии. Математическое моделирование и численные методы, 2023, № 3, с. 125–133



004.9:621.7 Моделирование поля температур при получении металлоизделий на литейно-ковочном модуле с односторонним воздействием бокового бойка и неподвижной плитой

Дмитриев Э. А. (ФГБОУ ВО «КнАГУ»), Потянихин Д. А. (ФГБОУ ВО «КнАГУ»), Одиноков В. И. (ФГБОУ ВО «КнАГУ»), Евстигнеев А. И. (ФГБОУ ВО «КнАГУ»), Квашнин А. Е. (ФГБОУ ВО «КнАГУ»)


doi: 10.18698/2309-3684-2022-2-6377


В работе представлена математическая постановка и приведены результаты расчетов в задаче об определении поля температуры при деформировании полосы, изготовленной из алюминиевого сплава АД0, на литейно-ковочном модуле вертикального типа новой модификации. Конструкция литейно-ковочного модуля предполагает, что из четырех стенок кристаллизатора одна неподвижна, вторая совершает вращательное движение на эксцентриковых валах, две другие совершают движение в вертикальной плоскости, обеспечивая подачу деформированной заготовки вниз. При решении задачи используется апробированный численный метод. Для движущейся среды уравнение теплопроводности записывается в конечно-разностном виде в криволинейной ортогональной системе координат. Решение задачи проводится итерационным методом. При расчете начального температурного поля и при его дальнейшем изменении учитывается теплоотвод на поверхностях контакта металла с инструментами деформирования. Результатом решения является поле температуры в пространственной области для дискретных моментов времени, соответствующих шагам численного счета. На каждом шаге определяется граница жидкого и затвердевшего металла.


Дмитриев Э.А., Потянихин Д.А., Одиноков В.И., Евстигнеев А.И., Квашин А.Е. Моделирование поля температур при получении металлоизделий на литейно-ковочном модуле с односторонним воздействием бокового бойка и неподвижной плитой. Математическое моделирование и численные методы, 2022, № 2, с. 65–79



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



<< 2