Рубрика: "2.3.1. Системный анализ, управление и обработка информации (технические науки)"



519.6 Моделирование и оптимизация перелета спутников малой массы с Земной орбиты на орбиту Марса с помощью ионных двигателей

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Чуванова Л. О. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-2-5467


В данной работе рассматривается оптимизация перелета спутника малой массы с Земной орбиты на орбиту Марса с использованием ионных двигателей. Ионный двигатель позволяет минимизировать расход топлива и разогнать космический аппарат до довольно высоких скоростей вдали от планет солнечной системы. Рассмотрению подлежит гелиоцентрический участок полета. Ставится задача минимизации времени перелета. В работе приняты следующие допущения: орбиты Земли и Марса являются круговыми и лежащими в одной плоскости. В качестве управления выбирается угол между тангенциальной скоростью космического аппарата в гелиоцентрической системе и направлением действия тяги. При составлении алгоритма оптимизации использован принцип максимума Понтрягина, который приводит задачу оптимизации функционала к краевой задаче для системы обыкновенных дифференциальных уравнений. Решение краевой задачи найдено одним из численных методов — методом пристрелки, дающим наиболее точные результаты. Проведен анализ полученных результатов и проведено сравнение с данными, полученными ранее в подобных расчетах зарубежными авторами другим численным методом решения. Делается вывод о работоспособности метода пристрелки при решении подобных задач.


Мозжорина Т.Ю., Чуванова Л.О. Моделирование и оптимизация перелета спутников малой массы с Земной орбиты на орбиту Марса с помощью ионных двигателей. Математическое моделирование и численные методы, 2021, № 2, с. 54–67.



519.87 Структурная теория сложных систем. Геометрическая теория и гуманитарные аспекты моделирования

Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2022-4-93113


Предлагается формальное определение компьютерной модели сложной системы, как рода структуры в смысле Н. Бурбаки — род структуры M (модель). Класс математических объектов, определяемый родом структуры M обладает следующими двумя свойствами: комплекс, созданный объединением математических объектов рода структуры M по определенным правилам, сам является математическим объектом рода структуры M. Организация вычислительного процесса для всех математических объектов рода структуры M однотипна и поэтому может быть реализована единой универсальной программой организации имитационных вычислений. Наличие этих двух свойств у представителей рода структуры M позволяет построить сквозную технологию описания, синтеза и программной реализации моделей сложных систем — Модельный синтез и Модельно-ориентированное программирование. Изучая морфизмы базисных множеств построенной с помощью модельного синтеза модели рода структуры M, и инварианты, ограничивающие такие морфизм, мы получаем формальный математический язык исследования сложных открытых (меняющих свой состав) систем. Ведя традиционный по форме гуманитарный дискурс, можно все время соотносить его с соответствующим объектом рода структуры M — транслируя на математический язык гуманитарные понятия языка более высокого уровня. Выводами, полученными с помощью этого языка, является, например, то, что устойчивое развитие есть modus vivendi сложной открытой системы и что в сложных открытых системах, в отличие от замкнутых физических систем, ведущую роль играет сохранение законов (система жертвует мощность на поддержание своих аксиом и структуры), а не законы сохранения (которые конечно же имеют место).


Бродский Ю.И. Структурная теория сложных систем. Геометрическая теория и гуманитарные ас-пекты моделирования. Математическое моделирование и численные методы, 2022, № 4, с. 93–113.



519.8 Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-3-125133


С помощью вероятностных методов предложена модель конфликта двух взаимодействующих систем, состоящих из многочисленных структурных единиц, с учетом эффекта задержки информации о взаимном состоянии: о структуре, количестве и параметрах структурных единиц друг друга. Проведено исследование влияния недостаточности информации в конкретный момент времени на исход процесса развития конфликта. Показано, что наличие информации о состоянии структурных единиц противоположной стороны может значительно увеличить вероятность успешности развития конфликта, причём при увеличении числа единиц структурных единиц разница в вероятности успешного развития сценария конфликта существенно увеличивается.


Чуев В.Ю., Дубограй И.В. Моделирование конфликта взаимодействующих систем с учетом эффекта получения информации о взаимном состоянии. Математическое моделирование и численные методы, 2023, № 3, с. 125–133



004.942 Моделирование среды предприятия с использованием дискретных вычислительных алгоритмов

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Маркова Ю. Н. (АУ «Технопарк–Мордовия»), Занкин А. И. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2022-1-109128


В настоящее время наибольшую известность получили методы моделирования и анализа изменений экономических характеристик инновационного процесса на основе уравнений диффузии вещества в среде с заданными параметрами. Результаты анализа в этом случае существенно зависят от обеспечения точности измерения параметров среды, что не всегда достижимо на практике. Представляется целесообразным переход от парадигмы диффузии к парадигме реализации инновации, т.е. к последовательному моделированию состояний инновации, переменные и характеристики которых соответствуют принятым на практике методам измерения и контроля. При таком подходе динамика экономических состояний опытно-конструкторских работ, производства и реализации инновации представляется системами обыкновенных дифференциальных уравнений, начальные условия и коэффициенты которых зависят от параметров внутренней и внешней сред предприятия. Разработанные в статье две дискретные математические модели позволяют контролировать эти параметры с использованием практических методов измерения. Первая дискретная модель представляет собой функционал, обеспечивающий пересчёт реальных параметров внутренней среды предприятия на момент начала масштабирования инновации в коэффициенты дифференциальных уравнений и начальные условия, отражающие результаты подготовки производства. Исходная информация содержится в базе данных ERP предприятия. Вторая дискретная модель реализуется как клеточный автомат. Автоматная модель внешней среды производства может использовать данные, поддающиеся практическому измерению с помощью хорошо отработанных методов маркетинга. Полученные результаты вычислительных экспериментов подтверждают обоснованность гипотезы перехода от парадигмы модели диффузии к парадигме последовательного моделирования экономических состояний инновации.


Белов В.Ф., Гаврюшин С.С., Маркова Ю.Н., Занкин А.И. Моделирование среды предприятия с использованием дискретных вычислительных алгоритмов.Математическое моделирование и численные методы, 2022, № 1, с. 109–128



519.8 Моделировании противоборства двух сторон c учетом резервирования

Чуев В. Ю. (МГТУ им.Н.Э.Баумана), Дубограй И. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-2-155163


На основе метода динамики средних разработана модель противоборства двух сторон, учитывающая подвод резервов одной из сторон. Установлено, что своевременный подвод резервов может существенно повлиять на ход протекания процесса и его окончательный результат. Также показано, что использование резерва в начале действий значительно улучшает результативность противоборства сторон.


Чуев В.Ю., Дубограй И.В. Моделировании противоборства двух сторон c учетом резервирования. Математическое моделирование и численные методы,2023, № 2, с. 155–163



004.9:621.7 Моделирование поля температур при получении металлоизделий на литейно-ковочном модуле с односторонним воздействием бокового бойка и неподвижной плитой

Дмитриев Э. А. (ФГБОУ ВО «КнАГУ»), Потянихин Д. А. (ФГБОУ ВО «КнАГУ»), Одиноков В. И. (ФГБОУ ВО «КнАГУ»), Евстигнеев А. И. (ФГБОУ ВО «КнАГУ»), Квашнин А. Е. (ФГБОУ ВО «КнАГУ»)


doi: 10.18698/2309-3684-2022-2-6377


В работе представлена математическая постановка и приведены результаты расчетов в задаче об определении поля температуры при деформировании полосы, изготовленной из алюминиевого сплава АД0, на литейно-ковочном модуле вертикального типа новой модификации. Конструкция литейно-ковочного модуля предполагает, что из четырех стенок кристаллизатора одна неподвижна, вторая совершает вращательное движение на эксцентриковых валах, две другие совершают движение в вертикальной плоскости, обеспечивая подачу деформированной заготовки вниз. При решении задачи используется апробированный численный метод. Для движущейся среды уравнение теплопроводности записывается в конечно-разностном виде в криволинейной ортогональной системе координат. Решение задачи проводится итерационным методом. При расчете начального температурного поля и при его дальнейшем изменении учитывается теплоотвод на поверхностях контакта металла с инструментами деформирования. Результатом решения является поле температуры в пространственной области для дискретных моментов времени, соответствующих шагам численного счета. На каждом шаге определяется граница жидкого и затвердевшего металла.


Дмитриев Э.А., Потянихин Д.А., Одиноков В.И., Евстигнеев А.И., Квашин А.Е. Моделирование поля температур при получении металлоизделий на литейно-ковочном модуле с односторонним воздействием бокового бойка и неподвижной плитой. Математическое моделирование и численные методы, 2022, № 2, с. 65–79



519.866 Математическое моделирование стратегической рекламной кампании

Чибисова А. В. (МГТУ им.Н.Э.Баумана), Шинаков Д. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2023-4-109121


В данной статье предлагается создать модель прибыли для обычного рекламодателя, который будет размещать рекламу на видеоплатформе. Видеоплатформы предоставляют услуги видеоконтента для удовлетворения потребностей пользователей в развлечениях, а также рекламные площади для удовлетворения потребностей рекламодателей в получении прибыли. При просмотре видео потребители могут получить воспринимаемую полезность, удовлетворив свою потребность в развлечениях и любопытстве. Например, люди смотрят телевизионные торговые каналы, чтобы купить или узнать о товарах; чистая полезность рекламы для таких пользователей положительна. Тем не менее включение рекламы может негативно влиять на некоторых потребителей, тем самым снижая их полезность. Например, пользователям может надоесть видео-реклама вследствие незаинтересованности. Следовательно, взаимосвязь между продолжительностью видео и рекламы является ключевым фактором, влияющим на воспринимаемую потребителями полезность. В данной работе мы исследуем связь между продолжительностью рекламного ролика и прибылью рекламодателя на рынке короткой видео-рекламы.


Чибисова А.В., Шинаков Д.С. Математическое моделирование стратегической рекламной кампании. Математическое моделирование и численные методы, 2023, № 4, с. 109-121.



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



519.87 Структурная теория сложных систем. Модельный синтез

Бродский Ю. И. (ФИЦ ИУ РАН)


doi: 10.18698/2309-3684-2022-3-98123


В данной статье прежде всего хотелось упорядочить результаты работ автора последних двух десятков лет в области структурной теории моделирования сложных систем и практики реализации таких систем с единых позиций. На основе гуманитарного анализа ключевых свойств сложных систем, признаваемых таковыми рядом авторитетных исследователей и практиков этой области, и предположения о возможности построения математической компьютерной модели сложной системы, — гипотезы о замкнутости, — предлагается формальное определение компьютерной модели сложной системы, как рода структуры в смысле Н. Бурбаки — род структуры М (модель). Класс математических объектов, определяемый родом структуры М обладает следующими двумя свойствами: комплекс, созданный объединением конечного числа математических объектов рода структуры М по определенным правилам, сам является объектом этого рода структуры. Организация вычислительного процесса для всех математических объектов рода структуры М однотипна и поэтому может быть реализована единой универсальной программой организации имитационных вычислений. Наличие этих двух свойств у представителей рода структуры М позволяет построить сквозную технологию описания, синтеза и программной реализации моделей сложных систем — Модельный синтез и Модельно-ориентированное программирование. Изучая морфизмы базисных множеств построенной с помощью модельного синтеза модели рода структуры М, и инварианты, ограничивающие такие морфизм, мы получаем формальный математический язык исследования сложных открытых (меняющих свой состав) систем. Ведя традиционный по форме гуманитарный дискурс, можно все время соотносить его с соответствующим объектом рода структуры М — транслируя на математический язык гуманитарные понятия языка более высокого уровня. Предлагаемая теория имеет практическое применение в области разработки, описания и реализации сложных программных систем. Предлагается новая программистская парадигма —Модельно-ориентированное программирование, являющееся полной реализацией методов САПР в программировании. При разработке программной системы удается оставаться в рамках декларативного программирования, избегая императивного, что существенно упрощает как ее разработку и реализацию, так и последующую отладку.


Бродский Ю.И. Структурная теория сложных систем. Модельный синтез. Математическое моделирование и численные методы, 2022, № 3, с. 98–123.



<< 2