Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"
521.19 Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе
doi: 10.18698/2309-3684-2023-4-6473
Одним из видов гравитационного рассеяния в Солнечной системе в рамках модели круговой ограниченной задачи трех тел (CR3BP) являются гравитационные маневры «частиц незначительной массы» (космические аппараты, астероиды, кометы и др.). Для их описания полезна физическая аналогия с рассеянием пучков заряженных альфа-частиц в кулоновском поле. Однако, в отличие от рассеяния заряженных частиц, существуют внешние ограничения на возможность выполнения гравитационных маневров, связанные с ограниченным размером сферы влияния планеты. В то же время из литературы по CR3BP известны внутренние ограничения на возможность исполнения гравитационных маневров, оцениваемые эффективными радиусами планет (включая гравитационный захват планетой, попадающей в нее). Они зависят от асимптотической скорости частицы относительно планеты. По понятным причинам их влияние лишает возможности эффективного использования гравитационных маневров. В работе представлены обобщенные оценки размеров околопланетных областей (плоских вращающихся синхронно с малым телом «пертурбационных колец» или «пертурбационных оболочек» в трехмерном случае), попадание в которые является необходимым условием реализации гравитационных маневров. Детальный анализ показывает, что Нептун и Сатурн имеют характерные оболочки — полые сферы возмущений самых больших размеров в Солнечной системе, а Юпитер занимает в этом списке лишь четвертое место.
Боровин Г.К., Голубев Ю.Ф., Грушевский А.В., Тучин А.Г. Моделирование пертурбационных оболочек для гравитационных маневров в Солнечной системе.Математическое моделирование и численные методы, 2023, № 4, с. 64–73.
004.942 Математическая модель архитектуры комплекса средств распределенного проектирования
doi: 10.18698/2309-3684-2024-1-110123
Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.
Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.
519.6 Агентная модель двух конкурирующих популяций с учетом структурности
doi: 10.18698/2309-3684-2022-3-7183
В статье описывается агентная имитационная модель двух популяций, конкурирующих за один ресурс. В модели считается, что особь погибает, если её масса-энергия становится неположительной. Предполагается, что особи каждой из рассматриваемых популяций могут образовывать стаи, это позволяет популяциям повышать свою конкурентоспособность. В модели это формализуется посредством возможности организовывать сети, связывающие особей одного вида. При этом особи могут образовывать лишь определенное количество связей с соседями. В модели для описания этого вводится понятие «валентности». Предполагается, что внутри каждой сети происходит мгновенное перераспределение ресурса по всем членам сети, имеющегося у каждого членом стаи. В статье помимо модели описана структура программы, с помощью которой проводились имитационные эксперименты. В результате проведенных имитационных экспериментов было получено следующее. Если ресурс высокопродуктивный, то в процессе конкурентного взаимодействия побеждает популяция, агенты, которой имеют большую «валентность». А в случае низко продуктивного ресурса победу в конкурентном взаимодействии одерживают особи популяции, обладающей меньшей «валентностью». Это связано с тем, что более сложные структуры требуют большей энергии поддержания стаи.
Белотелов Н.В., Бровко А.В. Агентная модель двух конкурирующих популяций с учетом их структурности. Математическое моделирование и численные методы, 2022, № 3, с. 71–83.