Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.6 Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Рахманкулов Д. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-7487


В данной работе рассматривается оптимизация перелета спутника малой массы с орбиты Земли на орбиту Марса под солнечным парусом. Оптимизация управления углом установки солнечного паруса проводится с использованием принципа максимума Понтрягина при минимизации времени перелета. В отличие от предшествующих работ на эту тему решение краевой задачи, к решению которой сводится принцип максимума, получено методом пристрелки. Программа расчета написана на языке программирования С++. Несмотря на вычислительные сложности, возникающие при использовании метода пристрелки, удалось добиться хорошей сходимости метода Ньютона, лежащего в основе алгоритма. Проведен анализ точности полученных результатов и показана возможность применения метода пристрелки при решении подобных задач. Проведено сравнение с данными ранее опубликованных работ. Несмотря на некоторые допущения, использованные при разработке алгоритма расчета, работа имеет свою ценность в плане оценки возможности использования метода пристрелки, дающего наиболее точные численные результаты оптимизации.


Мозжорина Т.Ю., Рахманкулов Д.А. Моделирование и оптимизация управлением спутника малой массы при перелете с орбиты Земли на орбиту Марса под солнечным парусом. Математическое моделирование и численные методы, 2021, № 3, с. 74–87.



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



523.6+533.6 Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез

Андрущенко В. А. (Институт автоматизации проектирования РАН), Сызранова Н. Г. (Институт автоматизации проектирования РАН)


doi: 10.18698/2309-3684-2023-3-4261


В рамках актуальной проблемы кометно-астероидной опасности численно исследуются физические процессы, вызывающие разрушение и фрагментацию метеорных тел в атмосфере Земли, в данном случае Тунгусского болида. Число всевозможных версий и гипотез, связанных с Тунгусским явлением, чрезвычайно велико и продолжает возрастать, поэтому необходим анализ и обобщений всех известных фактов, присущих этому нестандартному катастрофическому событию, и только после этого приступить к выдвижению тех или иных гипотез, его объясняющих. На основе разработанной физико-математической модели, определяющей движение космических объектов естественного происхождения в атмосфере и их взаимодействия с ней, нами предложены две гипотезы, объясняющие процессы, происходящие при падении Тунгусского тела в 1908г. Первая гипотеза связана с дроблением тела, представляющего собой каменный метеороид, на большое количество фрагментов, которые разрушились в плотных слоях атмосферы под действием термических напряжений до размера мелкой пыли. Трудности выявления мелких частиц, выпавших именно в результате Тунгусского события, объясняются в основном следующим обстоятельством ˗ сроки начала первичных поисков следов падения тела были отдалены от момента события на целых двадцать лет, в течение которых на этой территории могло произойти весьма значительное количество других геофизических процессов. Вторая гипотеза связана с явлениями, возникающими при малых углах входа тела в атмосферу Земли. В этом случае происходит изменение баллистики его полета в атмосфере, заключающееся в переходе от режима падения к режиму подъема. Этот эффект приводит к реализации следующих возможных сценариев события: возврат тела обратно в космическое пространство при его остаточной скорости большей второй космической; переход тела на орбиту спутника Земли при остаточной скорости большей первой космической; при меньших значениях остаточной скорости тела возвращение его через некоторое время к режиму падения и достижение им земной поверхности на значительном расстоянии от предполагаемого места падения. Предложенные гипотезы объясняют, например, отсутствие материальных следов, в том числе и кратеров в ходе поисков останков Тунгусского болида в окрестности вывала леса


Андрущенко В.А., Сызранова Н.Г. Моделирование Тунгусского явления 1908 года в рамках двух возможных гипотез. Математическое моделирование и численные методы, 2023, № 3, с. 42–61.



<< 4