Рубрика: "1.2.2. Математическое моделирование, численные методы и комплексы программ (технические науки)"



519.6:629.7.02 Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов

Бушуев А. Ю. (МГТУ им.Н.Э.Баумана), Резников А. О. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2021-3-6273


Построена модель генетического алгоритма с бинарным кодированием с независимой селекцией Шеффера, позволяющая производить поиск глобального оптимума по нескольким критериям без их скаляризации. При расчетах учитывается область всех возможных перемещений исполнительных органов в условиях неопределённых внешних воздействий в некотором, заранее заданном, диапазоне. Разработан алгоритм, позволяющий хранить промежуточные результаты для устранения проблемы большого количества повторяющихся расчетов в ходе работы эволюционного алгоритма, что позволило снизить время вычислений. Эффективность работы оптимизационного алгоритма демонстрируется на примере решения модельной задачи.


Бушуев А.Ю., Резников А.О. Применение генетического алгоритма в задаче моделирования и оптимизации пневмогидравлической системы синхронизации исполнительных органов. Математическое моделирование и численные методы, 2021, № 3, с. 62–73.



004.942 Математическая модель архитектуры комплекса средств распределенного проектирования

Белов В. Ф. (АУ «Технопарк–Мордовия»/МГУ им. Н.П. Огарева), Гаврюшин С. С. (МГТУ им.Н.Э.Баумана), Занкин А. И. (МГУ им. Н.П. Огарева), Исайкин В. Ю. (МГУ им. Н.П. Огарева)


doi: 10.18698/2309-3684-2024-1-110123


Целью статьи является разработка метода распределения задач проектирования изделий машиностроения на заданном множестве исполнителей работ. При этом исполнители работ структурно и географически связаны со своими цифровыми платформами, образующими в совокупности экосистему проектирования. Разработана математическая модель, которая может успешно применяться для генерации архитектуры комплекса средств, покрывающих задачи инженерии требований, системной архитектуры и испытаний для каждого проекта, закрепленного за одной из платформ. В качестве метода моделирования обосновано применение сети Петри. Её реализация в виде программного приложения для PLM-системы цифровой платформы может существенно повысить качество управления проектами и их портфелями.


Белов В.Ф., Гаврюшин С.С., Занкин А.И., Исайкин В.Ю. Математическая модель архитектуры комплекса средств распределенного проектирования. Математическое моделирование и численные методы, 2024, № 1, с. 110–123.



519.63:536.4 Численное моделирование процессов образования, роста и разложения агломератов в пористой среде при разных режимах нагрева

Донской И. Г. (Институт систем энергетики им. Л.А. Мелентьева СО РАН)


doi: 10.18698/2309-3684-2021-3-2441


В статье рассматривается численная модель течения газа в пористой среде, содержащей частицы реакционноспособного компонента (полимера). При нагреве эти частицы расширяются, деформируются и заполняют порозное пространства, в результате чего проницаемость существенно снижается. Связь между пористостью и проницаемостью описывается формулой Козени-Кармана. Тогда вблизи нижней (входной) границы образуется область с низкой проницаемостью (агломерат), рост которой определяется условиями на боковой и входной границе. В результате расчетов получены характерные сценарии блокировки пористой среды при разных температурах нагрева. Показано, что при нагреве через стенку полимер разлагается, и пористая среда частично восстанавливает проницаемостью При нагреве поступающим газом агломерат намного более устойчив, поскольку он блокирует источник нагрева.


Донской И.Г. Численное моделирование процессов образования, роста и разложения агломератов в пористой среде при разных режимах нагрева. Математическое моделирование и численные методы, 2021, № 3, с. 24–41.



<< 4