Рубрика: "05.07.00 Авиационная и ракетная техника"



629.762 Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию

Плюснин А.В.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2016-2-3954


Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.


Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию. Математическое моделирование и численные методы, 2016, №2 (10), c. 39-54



533.6:51-71 Исследование влияния энергомассообмена на течение в «следе» сверхзвуковых моделей конических тел

Сидняев Н.И.(МГТУ им.Н.Э.Баумана), Гордеева Н.М.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2015-1-3149


Представлены исследования по динамике движения и переноса энергии при сверхзвуковом течении в донной области. Показано, что течение в донной области существенно зависит от структуры пограничного слоя на участке между задней кромкой и точкой прилипания на осевой линии, в которой сходится пограничный слой, оторвавшийся от задней кромки. Включены исследование влияния массоподвода газа в донную область с поверхности тела и дна и теплообмена в донной области. Получено решение задачи о ближнем следе за осесимметричным телом без учета рециркуляции на ограниченном расстоянии от кормовой части.


Сидняев Н. И., Гордеева Н. М. Исследование влияния энергомассообмена на течение в «следе» сверхзвуковых моделей конических тел. Математическое моделирование и численные методы, 2015, №1 (5), c. 31-49



51-71:74 Длиннопериодические колебания летательных аппаратов при гиперзвуковых скоростях

Сидняев Н.И.(МГТУ им.Н.Э.Баумана), Глушков П.А.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-99114


Дан теоретический анализ длиннопериодических (фугоидных) колебаний летательного аппарата, обладающего подъемной силой и совершающего полет с гиперзвуковой скоростью в произвольной атмосфере. Причиной колебаний является взаимный переход кинетической энергии в потенциальную при полете по траектории, имеющей колебательный характер и определяемой в первую очередь регулируемым продольным моментом, равным нулю при установившемся полете. Показано, что с приближением скорости к первой космической уменьшение силы тяжести с высотой преобладает над уменьшением плотности атмосферы так, что с ростом скорости период фугоидных колебаний асимптотически стремится к соответствующему периоду обращения летательного аппарата. Получены аналитические выражения для короткопериодических колебаний, или колебаний по углу атаки. Показано, что эти выражения и выражения для длиннопериодических колебаний хорошо согласуются с результатами численного решения.


Сидняев Н. И., Глушков П. А. Длиннопериодические колебания летательных аппаратов при гиперзвуковых скоростях. Математическое моделирование и численные методы, 2014, №1 (1), c. 99-114



629.78 Математическое моделирование процесса раскрытия солнечной батареи большой площади

Бушуев А.Ю.(МГТУ им.Н.Э.Баумана), Фарафонов Б.А.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-2-101114


Построена математическая модель процесса раскрытия многозвенной конструкции солнечной батареи с тросовой системой раскрытия. На основе анализа кинематической схемы системы раскрытия выбраны размеры радиусов роликов и передаточного отношения двух типов шестеренчатых механизмов, обеспечивающих заданную последовательность фиксации звеньев. Для исследования процесса раскрытия солнечной батареи использовано уравнение Лагранжа второго рода. Отличительной особенностью предлагаемого подхода является итерационный способ учета деформации тросов системы синхронизации. Разработанная математическая модель может быть использована для выбора оптимальных конструктивных параметров и характеристик системы раскрытия, а также для анализа нештатных ситуаций и оценки надежности процесса раскрытия.


Бушуев А. Ю., Фарафонов Б. А. Математическое моделирование процесса раскрытия солнечной батареи большой площади. Математическое моделирование и численные методы, 2014, №2 (2), c. 101-114



533.16 Моделирование расхода газа через ламинарный пограничный слой на поверхности полусферы в сверхзвуковом воздушном потоке

Горский В.В.(ВПК «НПО машиностроения»/МГТУ им.Н.Э.Баумана), Сысенко В.А.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2014-4-8894


Приведены результаты оценки точности для инженерной методики расчета массового расхода газа через ламинарный пограничный слой на полусфере из работы [1]. Предложена аналогичная инженерная методика повышенной точности.


Горский В. В., Сысенко В. А. Моделирование расхода газа через ламинарный пограничный слой на поверхности полусферы в сверхзвуковом воздушном потоке. Математическое моделирование и численные методы, 2014, №4 (4), c. 88-94



539.3 Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине

Белкин А.Е.(МГТУ им.Н.Э.Баумана), Семенов В.К.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-1-1737


Рассмотрена задача математического моделирования испытаний по обкатке массивной шины на стенде с беговым барабаном, в ходе которых определены характеристики сопротивления качению шины. Подробно изложены основные этапы построения модели. Приведена формулировка контактной задачи свободного стационарного качения шины по испытательному барабану с учетом рассеяния энергии в резине при циклическом деформировании. Вязкоупругое поведение резины описано с помощью модели Бергстрема — Бойс, числовые параметры которой установлены по результатам испытаний образцов. Условия контакта в нормальном и тангенциальном направлениях сформулированы с использованием функций внедрения, для выполнения контактных ограничений применен метод штрафа. Численное решение трехмерной задачи вязкоупругости получено методом конечных элементов. Для оценки адекватности построенной модели проведено сравнение результатов расчетов с данными испытаний массивной шины на стенде Hasbach по значениям полученных сил сопротивления качению при различных
нагрузках на шину. Сопоставлены распределения давления в площади контакта, полученные расчетным путем и экспериментально с применением оборудования фирмы XSENSOR Technology Corporation.


Белкин А. Е., Семенов В. К. Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине. Математическое моделирование и численные методы, 2016, №1 (9), c. 17-37



629.762:532.5.031 Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов

Плюснин А.В.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2014-2-77100


Рассмотрены внутренние (колебания топлива в баках) и внешние (определение присоединенных масс и моментов инерции) задачи нестационарного взаимодействия корпуса ЛА и идеальной несжимаемой жидкости и их формулировки в виде граничных интегральных уравнений. Приведены формулы эффективного решения указанных задач методом граничных элементов применительно к телам вращения и примеры расчетов.


Плюснин А. В. Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов. Математическое моделирование и численные методы, 2014, №2 (2), c. 77-100



533.6.011.31.5:532.582.33 Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями

Котенев В.П.(МГТУ им.Н.Э.Баумана), Сысенко В.А.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2015-3-5867


Рассмотрена задача определения давления на поверхности тел, обтекаемых потоком газа с малой сверхзвуковой скоростью (M< 1,5). Разработан экономичный алгоритм для расчета давления на участке поверхности затупленных тел вращения. Приведены примеры расчетов обтекания сферы и эллипсоидов с разными отношениями полуосей. Сравнение с точными численными расчетами показывает эффективность предложенного подхода.


Котенев В. П., Сысенко В. А. Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями. Математическое моделирование и численные методы, 2015, №3 (7), c. 58-67



521.2:521.3:521.61 Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите

Базей А.А.(НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Базей Н.В.(НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Боровин Г.К.(Институт прикладной математики им. М.В. Келдыша РАН), Золотов В.Е.(Институт прикладной математики им. М.В. Келдыша РАН), Кашуба В.И.(НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Кашуба С.Г.(НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Куприянов В.В.(ГАО РАН), Молотов И.Е.(Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2015-1-8393


Выполнена обработка наблюдений искусственного небесного тела 43096, полученных в 2006 ̶ 2012 годах в рамках проекта «Научная сеть оптических инструментов для астрометрических и фотометрических наблюдений» — НСОИ АФН (ISON). Определены кеплеровы элементы орбиты, вектор состояния на 24.11.2006 г. 1 ч 55 мин 50,76 с UTC. Выполнено численное интегрирование уравнений движения с учетом возмущений со стороны полярного сжатия Земли, Луны, Солнца и давления солнечного излучения.
Основываясь на численной модели движения в околоземном пространстве, учитывающей только наибольшие возмущения, предложен способ сведения искусственных небесных тел с высоких орбит.
Впервые по объектам с большим отношением площади поверхности к массе получено столь значительное число данных на длительных интервалах времени, которое позволило выявить их особенности.


Базей А. А., Базей Н. В., Боровин Г. К., Золотов В. Е., Кашуба В. И., Кашуба С. Г., Куприянов В. В., Молотов И. Е. Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите. Математическое моделирование и численные методы, 2015, №1 (5), c. 83-93



1>>