Рубрика: "05.07.00 Авиационная и ракетная техника"



629.762 Моделирование параметров наддува свободного пространства контейнера при газодинамическом выбросе летательного аппарата с учетом свойств реального газа

Плюснин А.В.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2016-3-5378


Рассмотрен процесс наддува свободного пространства контейнера из баллона высокого давления, предшествующий газодинамическому выбросу летательного аппарата. Выполнены сравнительные расчеты этого процесса в квазистационарном приближении с использованием уравнений состояния идеального и реального газа. Показана необходимость учета отклонений термодинамических свойств рабочей среды от идеально-газового поведения для правильного определения запаса газа в баллоне и изменения температуры в наддуваемых объемах.


Плюснин А. В. Моделирование параметров наддува свободного пространства контейнера при газодинамическом выбросе летательного аппарата с учетом свойств реального газа. Математическое моделирование и численные методы, 2016, №3 (11), c. 53-78



629.735.33.016+621.45.015 Моделирование влияния атмосферных условий на результаты оптимизации программы полета дозвукового пассажирского самолета

Мозжорина Т.Ю.(МГТУ им.Н.Э.Баумана), Губарева Е.А.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-7488


Исследовано влияние атмосферных условий, характерных для различных климатических зон, на результаты оптимизации программы полета пассажирского дальнемагистрального самолета. Моделирование полета и характеристик силовой установки основано на современных традиционных подходах, используемых в задачах подобного рода. Оптимизация участка полета разгона — набора высоты проводится при минимизации количества топлива, затраченного на этот участок полета. Оптимизация крейсерского участка полета проводится при учете эксплуатационных ограничений гражданской авиации. При моделировании полета используется встроенная модель двухконтурного турбореактивного двигателя, позволяющая рассчитать характеристики силовой установки при любых режимах полета. Полет дозвукового самолета рассмотрен в одной вертикальной плоскости. Расчеты проведены для шести стандартов изменения температуры воздуха по высоте (в зависимости от климатической зоны). Учтена возможность изменения атмосферного давления у поверхности Земли. Оценено влияние атмосферных условий на результаты оптимизации программы полета.


Мозжорина Т. Ю., Губарева Е. А. Моделирование влияния атмосферных условий на результаты оптимизации программы полета дозвукового пассажирского самолета. Математическое моделирование и численные методы, 2014, №3 (3), c. 74-88



533.6.011.31.5:532.582.33 Аналитические формулы повышенной точности для расчета распределения давления на поверхности выпуклых затупленных тел вращения произвольного очертания

Котенев В.П.(МГТУ им.Н.Э.Баумана), Сысенко В.А.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2014-1-6881


Разработаны аналитические формулы для быстрого и точного расчета давления на участке поверхности тел вращения произвольного очертания, обтекаемых сверхзвуковым потоком газа. Рассмотрены примеры применения метода для пространственных течений газа.


Котенев В. П., Сысенко В. А. Аналитические формулы повышенной точности для расчета распределения давления на поверхности выпуклых затупленных тел вращения произвольного очертания. Математическое моделирование и численные методы, 2014, №1 (1), c. 68-81



629.762:532.5.031 Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов

Плюснин А.В.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2014-2-77100


Рассмотрены внутренние (колебания топлива в баках) и внешние (определение присоединенных масс и моментов инерции) задачи нестационарного взаимодействия корпуса ЛА и идеальной несжимаемой жидкости и их формулировки в виде граничных интегральных уравнений. Приведены формулы эффективного решения указанных задач методом граничных элементов применительно к телам вращения и примеры расчетов.


Плюснин А. В. Моделирование внутреннего и внешнего нестационарного взаимодействия корпуса летательного аппарата с жидкостью методом граничных элементов. Математическое моделирование и численные методы, 2014, №2 (2), c. 77-100



533.16 Моделирование расхода газа через ламинарный пограничный слой на поверхности полусферы в сверхзвуковом воздушном потоке

Горский В.В.(ВПК «НПО машиностроения»/МГТУ им.Н.Э.Баумана), Сысенко В.А.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2014-4-8894


Приведены результаты оценки точности для инженерной методики расчета массового расхода газа через ламинарный пограничный слой на полусфере из работы [1]. Предложена аналогичная инженерная методика повышенной точности.


Горский В. В., Сысенко В. А. Моделирование расхода газа через ламинарный пограничный слой на поверхности полусферы в сверхзвуковом воздушном потоке. Математическое моделирование и численные методы, 2014, №4 (4), c. 88-94



629.762 Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию

Плюснин А.В.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2016-2-3954


Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.


Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию. Математическое моделирование и численные методы, 2016, №2 (10), c. 39-54



539.3 Численное моделирование сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов

Димитриенко Ю.И.(МГТУ им.Н.Э.Баумана), Коряков М.Н.(МГТУ им.Н.Э.Баумана), Захаров А.А.(МГТУ им.Н.Э.Баумана), Строганов А.С.(МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-324


Предложен алгоритм численного моделирования сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов, который позволяет рассчитывать все параметры трехмерного аэрогазодинамического потока в окрестности поверхности аппарата, теплообмен на поверхности, процессы внутреннего тепломассопереноса в конструкции из термодеструктирующего полимерного композитного материала, а также процессы изменения термодеформирования композитной конструкции, включающие в себя эффекты изменения упругих характеристик композита, переменную тепловую деформацию, усадку, вызванную термодеструкцией, образование внутрипорового давления газов в композите. Приведен пример численного моделирования сопряженных процессов в модельной композитной конструкции высокоскоростного летательного аппарата, иллюстрирующий возможности предложенного алгоритма.


Димитриенко Ю. И., Коряков М. Н., Захаров А. А., Строганов А. С. Численное моделирование сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов. Математическое моделирование и численные методы, 2014, №3 (3), c. 3-24



521.2:521.3:521.61 Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите

Базей А.А.(НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Базей Н.В.(НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Боровин Г.К.(Институт прикладной математики им. М.В. Келдыша РАН), Золотов В.Е.(Институт прикладной математики им. М.В. Келдыша РАН), Кашуба В.И.(НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Кашуба С.Г.(НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Куприянов В.В.(ГАО РАН), Молотов И.Е.(Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2015-1-8393


Выполнена обработка наблюдений искусственного небесного тела 43096, полученных в 2006 ̶ 2012 годах в рамках проекта «Научная сеть оптических инструментов для астрометрических и фотометрических наблюдений» — НСОИ АФН (ISON). Определены кеплеровы элементы орбиты, вектор состояния на 24.11.2006 г. 1 ч 55 мин 50,76 с UTC. Выполнено численное интегрирование уравнений движения с учетом возмущений со стороны полярного сжатия Земли, Луны, Солнца и давления солнечного излучения.
Основываясь на численной модели движения в околоземном пространстве, учитывающей только наибольшие возмущения, предложен способ сведения искусственных небесных тел с высоких орбит.
Впервые по объектам с большим отношением площади поверхности к массе получено столь значительное число данных на длительных интервалах времени, которое позволило выявить их особенности.


Базей А. А., Базей Н. В., Боровин Г. К., Золотов В. Е., Кашуба В. И., Кашуба С. Г., Куприянов В. В., Молотов И. Е. Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите. Математическое моделирование и численные методы, 2015, №1 (5), c. 83-93



533.6.011.31.5:532.582.33 Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями

Котенев В.П.(МГТУ им.Н.Э.Баумана), Сысенко В.А.(ВПК «НПО машиностроения»)


doi: 10.18698/2309-3684-2015-3-5867


Рассмотрена задача определения давления на поверхности тел, обтекаемых потоком газа с малой сверхзвуковой скоростью (M< 1,5). Разработан экономичный алгоритм для расчета давления на участке поверхности затупленных тел вращения. Приведены примеры расчетов обтекания сферы и эллипсоидов с разными отношениями полуосей. Сравнение с точными численными расчетами показывает эффективность предложенного подхода.


Котенев В. П., Сысенко В. А. Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями. Математическое моделирование и численные методы, 2015, №3 (7), c. 58-67



1>>