#### 621.74.043 Mathematical modeling of the process of mixing of liquid metal in the mold of a continuous steel casting plant

##### Odinokov V. I. (Komsomolsk-na-Amure State University), Evstigneev A. I. (Komsomolsk-na-Amure State University), Dmitriyev E. A. (Komsomolsk-na-Amure State University), Karpenko V. A. (Komsomolsk-na-Amure State University)

doi: 10.18698/2309-3684-2023-3-1841

Experimental studies of the flow of liquid metal in the UNRS crystallizer are a long, complex and time-consuming process. Therefore, mathematical modeling by numerical methods is increasingly used for this purpose. A new technology for pouring liquid metal into a crystallizer is proposed. The original patented design of the device, consisting of a direct-flow and rotating gluhodon glasses, is given. The main results of studies of the melt flow in the crystallizer volume are presented. The objects of research were the hydrodynamic and thermal fluxes of liquid metal of a new process of casting steel into a rectangular section mold of the UNRS, and the result was a spatial mathematical model describing the fluxes and temperatures of liquid metal in the mold. To model the processes occurring during the flow of metal in the crystallizer, a specially created software package was used. The theoretical calculations are based on the fundamental equations of hydrodynamics, the equations of mathematical physics (the equation of thermal conductivity taking into account mass transfer) and a proven numerical method. The studied area was divided into elements of finite dimensions, for each element the resulting system of equations was written in a difference form. The result of the solution is the fields of velocities and temperatures of the metal current in the volume of the mold. According to the developed numerical schemes and algorithms, a calculation program has been compiled. An example of calculating the casting of steel into a mold of rectangular cross-section, flow diagrams of liquid metal along various sections of the mold is given. Vector flows of liquid metal in different sections of the mold at different numbers of revolutions of the jacket with vertical ribs are clearly presented. Areas of different turbulence have been identified. The mixing mode at n = 30 rpm is considered optimal. At n = 50 rpm, liquid metal is ejected into the slag bath.

Одиноков В.И., Евстигнеев А.И., Дмитриев Э.А., Карпенко В.А. Математическое моделирование процесса перемешивания жидкого металла в кристаллизаторе установке непрерывной разливки стали. Математическое моделирование и численные методы, 2023, № 3, с. 18–41.