doi: 10.18698/2309-3684-2023-3-1841
Experimental studies of the flow of liquid metal in the UNRS crystallizer are a long, complex and time-consuming process. Therefore, mathematical modeling by numerical methods is increasingly used for this purpose. A new technology for pouring liquid metal into a crystallizer is proposed. The original patented design of the device, consisting of a direct-flow and rotating gluhodon glasses, is given. The main results of studies of the melt flow in the crystallizer volume are presented. The objects of research were the hydrodynamic and thermal fluxes of liquid metal of a new process of casting steel into a rectangular section mold of the UNRS, and the result was a spatial mathematical model describing the fluxes and temperatures of liquid metal in the mold. To model the processes occurring during the flow of metal in the crystallizer, a specially created software package was used. The theoretical calculations are based on the fundamental equations of hydrodynamics, the equations of mathematical physics (the equation of thermal conductivity taking into account mass transfer) and a proven numerical method. The studied area was divided into elements of finite dimensions, for each element the resulting system of equations was written in a difference form. The result of the solution is the fields of velocities and temperatures of the metal current in the volume of the mold. According to the developed numerical schemes and algorithms, a calculation program has been compiled. An example of calculating the casting of steel into a mold of rectangular cross-section, flow diagrams of liquid metal along various sections of the mold is given. Vector flows of liquid metal in different sections of the mold at different numbers of revolutions of the jacket with vertical ribs are clearly presented. Areas of different turbulence have been identified. The mixing mode at n = 30 rpm is considered optimal. At n = 50 rpm, liquid metal is ejected into the slag bath.
Dyudkin D.A., Kisilenko V.V., Smirnov A.I. Proizvodstvo stali. T.4. Nepreryvnaya razlivka metalla. [Steel production. Vol.4. Continuous casting of metal]. Moscow, Heat engineer Publ., 2008, 528 p.
Efimov V.A. Razlivka i kristallizaciya stali [Casting and crystallization of steel]. Moscow, Metallurgy Publ., 1976, 552 p.
Intern. Symposium on Electromagnetic Processing of Materials. October 25–28, 1994. Nagoya, Japan: ISIJ, 1994, 580 p.
Shakhov S.I., Smolyakov A.S., Rogachikov Yu.M. Rabota po primeneniyu elektromagnitnogo peremeshivaniya pri nepreryvnoj razlivke stali [Work on the application of electromagnetic mixing during continuous casting of steel]. Chernaya metallurgiya. Byulleten' nauchno-tekhnicheskoj i ekonomicheskoj informacii [Ferrous metallurgy. Bulletin of scientific, technical and economic information], 2015, no. 10, pp. 79-84.
Dauby P., Kunstreich S. Application of micro-refrigerators as the active element on the crystallization of metall. ISS Tech., 2003, pp. 491–504.
Stulov V.V., Matysik V.A., Novikov T.V., Shcherbakov S.V., Chistyakov I.V., Plotnikov A.P. Razrabotka novogo sposoba razlivki slyabovyh zagotovok na MLNZ [Development of a new method for casting slab blanks at the CCM]. Vladivostok, Dalnauka, 2008, 156 p.
Pat. 196254 Russian Federation. Int. Cl. B22D 11/114; B22D 41/62. Ustrojstvo dlya podachi zhidkogo metalla v vertikal'nyj kristallizator UNRS cherez pogruzhnoj pryamotochnyj stakan [A device for feeding liquid metal into the vertical crystallizer of the UNRS through an immersion ramjet glass] / Odinokov V.I., Evstigneev A.I., Dmitriev E.A. ‒ № 2021103305; stated. 12.03.2018; publ. 21.02.2020, 7 p.
Ho K., Pehlke R. Modelling of steel solidification using the general finite difference method. 5th International Iron and Steel Congress Procedure. 6th Process Technology Conference (April 6–9, 1986). Warrendale, 1986, vol. 6, pp. 853–866.
Kohn A., Morillon Y. Etnde mathematique de la solidification des lingots en aciermi-dur. Revue de Metallurgie, 1966, vol. 63, no. 10, pp. 779–790.
Mizikar E. Mathematical heat transfer model for solidification of continuons cast steel slabs. Transactions of the Metallurgical Soliety of AIME, 1967, vol. 239, no. 11, art. 1747.
Szekely J., Stanek V. On heat transfer and liquid mixing in the continuous casting of steel. Metallurgical Transactions, 1970, vol. 1, no. 1, pp. 119-126.
Larreq M., Sagues C., Wanin M. Vodele mathematique de la solidification eu coulee continue tenant compte de la convection al`interface solide-liquide. Revue de Metallurgie, 1978, vol. 75, no. 6, no. 337–352.
Odinokov V.I., Dmitriev E.A., Evstigneev A.I., Kuznetsov S.A., Gornakov A.I. Improvement of devices for filling the UNRS crystallizer with liquid metal. Metallurgist, 2021, no. 4, pp. 33-35.
Odinokov V.I., Evstigneev A.I., Dmitriev E.A., Numerical simulation of the metal filling process of a mold with an UNRS reflector. Izvestiya. Ferrous Metallurgy, 2019, no. 10, pp. 747-755.
Odinokov V.I., Dmitriev E.A., Evstigneev A.I. Mathematical modeling of the process of metal flow in the mold when it is fed from an immersion cup with eccentric holes. Izvestiya. Ferrous Metallurgy, 2018, no. 8, pp. 606-612.
Odinokov V.I., Dmitriev E.A., Evstigneev A.I. Mathematical modeling of the process of metal flow in the mold when it is fed from an immersion cup with eccentric holes. Izvestiya. Ferrous Metallurgy, 2017, no. 6, pp. 493-498.
Pat. 2764446 Russian Federation. Int. Cl. B22D 11/114; B22D 41/62. Ustrojstvo dlya podachi i peremeshivaniya stali v kristallizatore ustanovki nepreryvnoj razlivki [A device for feeding and mixing steel in the mold of a continuous casting unit] Odinokov V.I., Evstigneev A.I., Dmitriev E.A., Alexandrov A.Yu., Karpenko V.A. ‒ № 2021114411; application 20.05.2021; publ. 17.01.2022, 7 p.
Loitsyanskiy L.G. Mechanics of Liquids and Gases [Mekhanika zhidkosti i gaza]. 7-ed. Moscow, Drofa, 2003, 840 p.
Dimitrienko Yu.I. Nonlinear Continuum Mechanics and Large Inelastic Deformations. Springer, 2010, 722 p.
Odinokov V.I., Dmitriyev E.A., Evstigneev A.I., Potianikhin D.A., Kvashnin A.E. Mathematical modeling of the metal deformation process on a casting and forging module with a modified drive of the side strikers. Mathematical Modeling and Computational Methods, 2021, no. 3, pp. 3–23.
Dmitriev E.A., Potyanikhin D.A., Odinokov V.I., Evstigneev A.I., Lashmanov A.Yu., Kvashnin A.E. Modeling of the temperature field in the production of metal products on the casting and forging module of a new modification. Mathematical Modeling and Computational Methods, 2022, no. 2, pp. 63–77.
Odinokov V.I., Sevastyanov G.M., Savchenko I.G. Evolution of the stress state of a ceramic mold under non-standard external thermal action. Mathematical modeling, 2010, no. 11, pp. 97–108.
Odinokov V.I., Prokudin A.N. Modeling of the process of breaking ice jams. Applied Mechanics and technical physics, 2010, no. 1, pp. 110–116.
Evstigneev A.I., Odinokov V.I., Dmitriev E.A., Sviridov A.V., Ivankova E.P. The influence of external thermal action on the stress state of shell molds according to the smelted models. Mathematical modeling, 2021, no. 1, pp. 63–76.
Odinokov V.I., Kaplunov B.G., Peskov A.V., Bakov A.V. Matematicheskoe modelirovanie slozhnyh tekhnologicheskih processov [Mathematical modeling of complex technological processes]. Moscow, Science Publ., 2008, 176 p
Одиноков В.И., Евстигнеев А.И., Дмитриев Э.А., Карпенко В.А. Математическое моделирование процесса перемешивания жидкого металла в кристаллизаторе установке непрерывной разливки стали. Математическое моделирование и численные методы, 2023, № 3, с. 18–41.
Количество скачиваний: 1