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Экспериментальные исследования течения жидкого металла в кристаллизаторе 

УНРС являются продолжительным, сложным и трудоемким процессом. Поэтому 

все шире используется для этого математическое моделирование численными ме-

тодами. Предложена новая технология разливки жидкого металла в кристаллиза-

тор. Приведена оригинальная, запатентованная конструкция устройства, состоя-

щая из прямоточного и вращающегося глуходонного стаканов. Представлены ос-

новные результаты исследований течения расплава в объеме кристаллизатора. 

Объектами исследований стали гидродинамические и тепловые потоки жидкого 

металла нового процесса разливки стали в кристаллизатор прямоугольного сечения 

УНРС, а результатом – пространственная математическая модель, описывающая 

потоки и температуры жидкого металла в кристаллизаторе. Для моделирования 

процессов, протекающих при течении металла в кристаллизаторе, использован спе-

циально созданный программный комплекс. В основу теоретических расчетов поло-

жены основополагающие уравнения гидродинамики, уравнения математической 

физики (уравнение теплопроводности с учетом массопереноса) и апробированный 

численный метод. Исследуемую область разбивали на элементы конечных размеров, 

для каждого элемента записывали в разностном виде полученную систему уравне-

ний. Результат решения – поля скоростей и температур потока металла в объеме 

кристаллизатора. По разработанным численным схемам и алгоритмам составлена 

программа расчета. Приведен пример расчета разливки стали в кристаллизатор 

прямоугольного сечения, схемы потоков жидкого металла по различным сечениям 

кристаллизатора. Наглядно представлены векторные потоки жидкого металла в 

различных сечениях кристаллизатора при различных числах оборотов рубашки с 

вертикальными ребрами. Выявлены области различной турбулентности. Опти-

мальным принимается режим перемешивания при n = 30 об/мин. При n = 50 об/мин 

наблюдается выброс жидкого металла в шлаковую ванну. 

 

Ключевые слова: непрерывная разливка, кристаллизатор, глуходонный стакан, пе-

ремешивание, математическая модель, алгоритм, скорости потоков 

  

Введение. Получение мелкого зерна в непрерывном слитке напря-

мую связано с интенсификацией потоков жидкого металла в кристал-

лизаторе УНРС. Именно там начинает формироваться твердая фаза 

металла и его зернистая структура. Данная проблема отражена в мно-

гочисленных публикациях, в которых описываются различные спо-

собы и устройства подачи жидкого металла в кристаллизатор УНРС 

[1-12]. Натурные эксперименты предлагаемых способов и устройств 
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довольно трудоемки и сложны в осуществлении, поэтому наиболее це-

лесообразнее определить степень эффективности того или иного спо-

соба заполнения жидким металлом кристаллизатора, это построение 

математической модели. В нашем коллективе есть такой опыт иссле-

дований [13-16]. В данной работе строиться математическая модель 

нового способа перемешивания подающегося в кристаллизатор жид-

кого металла авторской технологии [17], а именно (рис. 1).  

Устройство для подачи и перемешивания стали в вертикальном 

кристаллизаторе (4) установки непрерывной разливки содержит глу-

ходонный погружной стакан (2) с выходными эксцентрично располо-

женными окнами (3), установленный на разливочном ковше (1). По 

наружной поверхности глуходонного погружного стакана выше его 

выходных окон установлена с зазором огнеупорная рубашка (5) с вер-

тикальными ребрами (6), соединенная с механизмом (8) ее принуди-

тельного вращения. Благодаря возможности регулирования скорости 

вращения рубашки повышается однородность структуры непрерыв-

ного слитка. 

 
Рис 1. Схема устройства для подачи и перемешивания стали в кристаллиза-

торе с вращающимся стаканом с вертикальными ребрами 
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Имеем квазистационарный процесс, повторяющийся при пово-

роте огнеупорной рубашки на 900. Математическое описание данного 

процесса очень сложно даже при использовании численных методов. 

Инженерная постановка задачи. Будем полагать, что глуходон-

ный стакан и вращающаяся огнеупорная рубашка имеют одинаковое 

квадратное сечение. Тогда огнеупорная рубашка при вращении будет 

перемешивать жидкий металл в кристаллизаторе своими гранями. 

На рис. 2 отображена схема вращения рубашки квадратного попе-

речного сечения в плоскости (
2x 3x ). 

 
Рис 2. Схема вращения погружного стакана 

 

Очевидно, что .cd c d cc dd d        Возьмем произвольную 

точку b  на стороне квадрата cd . При заданном направлении враще-

нии квадрата со скоростью V имеем: 
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В течение поворота стакана на 90° процесс будет нестационарным. 

При этом из окон стакана в нижней его части выходит жидкий металл 

со скоростью 
МV . Будем считать, что поперечные сечения окон равны.  

Квадрат в горизонтальном сечении вращается вокруг центра O  

(рис. 2). При заданном направлении вращения одна половина грани 

квадрата o c  как бы выталкивает жидкий металл от себя наружу, а вто-

рая половина грани o d  втягивает металл в противоположном направ-

лении. То же самое происходит и с другими гранями квадрата. В этом 

смысле, можно интерпретировать данный процесс как выход металла 

из участка грани o c  со скоростью 
tV  по формуле (1) и вход того же 

объема металла в участок грани o d , также со скоростью по формуле 

(1). Аналогичную интерпретацию движения металла можно приме-

нить и к другим граням квадрата с использованием формул (1, 2).  

Таким образом, будем считать погружной стакан квадратного по-

перечного сечения неподвижным, а через его грани втекает и вытекает 

металл со скоростями 
tV , согласно формулам (1, 2). Это не касается 

окон стакана, из которых жидкий металл поступает в кристаллизатор 

со скоростью 
МV .  

Такая идеализация позволяет рассматривать данный процесс как 

стационарный, что значительно облегчает его постановку и решение. 

Кроме того, не будем учитывать появляющуюся на гранях кристалли-

затора корочку затвердевшего металла. 

Математическая постановка задачи. Исходя из принятых допу-

щений, рассмотрим процесс истечения жидкого металла из окон квад-

ратного глуходонного стакана в кристаллизатор прямоугольного по-

перечного сечения. При этом движение металла по нормали к граням 

рубашки квадратного поперечного сечения соответствует формулам 

(1), (2). 

Среду (жидкий металл) будем считать несжимаемой ( const  , 

где   — плотность жидкости), линейно-вязкой (ньютоновской). 

Исходя из сформулированных допущений, запишем систему зако-

нов сохранения механики жидких сред в декартовой системе коорди-

нат [18]. 

Уравнение несжимаемости имеет вид 

 
, 0i iv  , 1,2,3i  . (3) 

Закон изменения количества движения имеет вид 
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здесь ij  — компоненты тензора напряжений в декартовых координа-

тах 
ix  ( 1,2,3i  ); ,

ij

ij j

jx


 


, *

iF  — компоненты удельной массовой 

силы, 
iv  — компоненты вектора скорости, полагаем, что 

 * *

2 3 0F F  , 

*

iI  — компоненты  внутренних массовых сил (сил инерции),   — 

время, idv

d
 — полная производная по времени  

 i i i
k

k

dv v v
v

d x

 
 

  
. (5) 

Определяющее соотношение для несжимаемой ньютоновской 

жидкости имеет вид 

 

, ,

,

2 ,

1
( ).

2

ij ij

ij ij ij

ij i j j i

p

v v

     

   

  

. (6) 

Здесь 
ij  — компоненты тензора скоростей деформаций; 

ij  — 

символ Кронекера. p  — давление в данной точке;  — гидростатиче-

ское напряжение;   — коэффициент вязкости. 

Уравнение теплопроводности (с учетом массопереноса жидкости) 

имеет вид: 

 
2d

a
d


  


, (7) 

где 
2  — оператор Лапласа;   — температура; a  — коэффициент 

температуропроводности / ( );a c      — коэффициент теплопро-

водности; с  — удельная теплоемкость; все эти величины принима-

ются константами. 

Будем далее полагать, что движение жидкости стационарно, т.е. 

т.е. полагается 

 / 0iv   , / 0   . 

Тогда система (3)-(7) сводится к следующей системе 

 
, 0i iv  , (8) 

 
*

,ij j i iF I   , (9) 
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 p   , 
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
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Для решения системы уравнений (8) - (10) воспользуемся апроби-

рованным численным методом, использованным в многочисленных 

разноплановых работах [19-24]. 

Граничные условия задачи (рис. 3): 
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12 13( ) 0
iГ

    ; 1 3i   ; 

 
21 23( ) 0

iГ
    ; 5,6,7,8i  ; 

31 32 0
iГ

    ; 9,10,11i  ; 

 
821 23( ) 0Г     ; 
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31 0Гv  ; 

 
2 0

iГ
v  ; 6,7,8i  ; 

 
3 0

iГ
v  ; 9,10,11i  . 

При решении уравнения (10) использовались граничные условия: 

 

*
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Здесь 
uv  — скорость вытягивания слитка (рис. 3); 

*

2v  — скорость вы-

хода жидкого металла из окон погружного стакана; 
*

i  — заданные 
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функции распределения температуры металла на поверхностях 
iГ ; 

*

iq  

— заданные из экспериментальных данных тепловые потоки через по-

верхности 
iГ ; 

*

5  — заданная температура выхода металла из окна 
5Г . 

 

 
Рис 3. Формализованная расчетная схема процесса 

разливки металла в кристаллизатор 
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Численный метод решения задачи. Для решения системы урав-
нений (8) - (10) используем численный метод, в соответствии с кото-
рым уравнения (9) для элемента, ограниченного произвольной систе-
мой ортогональных поверхностей (рис. 4) будут иметь вид: 

 

( ) ( ) 0.5

0.5 0.5 ( 2 )

( 2 ) 2 ( ) 0;

, , 1, 2,3;  .

ik ij ii jj ij ik ii kk ii ij ik

ik ki kj ij ji jk ji jk jk ji ij

ki kj kj ki ik i i

S S S S S S

S S S S S S S S

S S S S V F I

i j k i j k

         

         

       

  

 (13) 

Здесь суммирование по индексам ,  ,  i j k  — отсутствует, а также 

введены обозначения 

 
1 20,5( )ij ij ij    ; 

2 1 ,  ( , 1, 2,3)ij ij ij i j     ; 

где ( 1,2,3;  1,2)d

ii i d    — нормальное напряжение, действующее на 

криволинейной поверхности «d» элемента (m), нормалью к которой 

является касательная к координате 
ia ; 

d

ij ; ( )i j  — касательное 

напряжение в направлении jx  по криволинейной поверхности «d» эле-

мента (m), нормалью к которой является касательная к координате 
ia ; 

 
1 2

ij ij ijS S S  ; 
2 1

ij ij ijS S S   . 

Значения
j

ikS вычисляются как среднее от значений длин дуг гра-

ницы граней (ребер). 

Для нормальных компонент тензора скоростей деформаций ис-

пользуем следующие формулы 

 
22 2j jii k ki
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ji ji ij ki ik

v Sv v S

S S S S S

  
      ; , , 1,2,3i j k  ; i j k  ; (14) 

где 1 2;i i iv v v  2 1.i i iv v v    

Сдвиговые скорости деформаций ( )ij i j   по элементу (m) опре-

деляются как средние от значений 
ij  в узлах элемента 

 0 0 0 0 1 1 1 1

0

1
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8

a b c d a b c d

ij m ij ij ij ij ij ij ij ijd          . (15) 

Значение 
0

ij  в узле (рис. 4,б) согласно [2,3] имеет вид 

0
2 2
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j j j i i i

ij j i
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v S S v S S
v v i j i j

S S S S S S

      
        (16) 

где 
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 1 2

i i iS S S  ; 2 1

i i iv v v   ; 

 1 2

i i iS S S    ; 1 2

i i iS S S    ; 

значения ( 1,2)j

iv j   вычисляются как средние от значений по граням 

элемента, примыкающих к данному ребру [2]. 

 
а) 

 
б) 

Рис 4. Схема обозначения дуг сетки: 

а) для расчета нормальных напряжений и перемещений в криволинейном элементе; 

б) для расчета касательных напряжений 
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Для принятой схемы процесса (рис. 3) рассматриваемую область 

можно разбить на элементы, грани которых будут прямоугольной 

формы (рис. 5). Тогда уравнения (13) и выражения (14,16) в разност-

ном виде для элемента (рис. 5) будут иметь вид: 

*4 ( ) 0, , , 1, 2,3;ii ij ik ik ki kj ij ji jk i iS S S S S S V F I i j k             (17) 

 
2 i

ii

ij

v

S


  , , 1,2,3i j  . (18) 

 

Рис 5. Элемент прямоугольной формы 

 

Выражение (16) выполняется для внутренних узлов сетки (рис.6): 

 0
2 2

,  .
j i

ij

i j

v v
i j

S S

 
     (19) 

Где 

 1 2

i i iS S S  ; 2 1

i i iv v v    ;  ( 1,2)j

iv j  . 

— вычисляется как средние от значений 
j

iv  по граням, примыкающих 

к данному ребру элемента. Тогда 

 
o o

ij ij   , (20) 

а ( ,  1, 2)t

ij i j t    на внутренней грани 

 0, 25t o

ij ij   . (21) 

0a

1a

1b 1c
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Рис. 6. Внутренний узел произвольного ортогонального элемента 

 

Для элемента (рис. 5) алгебраическая система уравнений в целом 

примет вид: 

 *4 ( ) 0,  , , 1, 2,3;ii ij ik ik ki kj ij ji jk i iS S S S S S V F I i j k             (22) 

 * * *1 2 3
1 2 3

1 2 3

( ) ( ) ( )
( i i i

i

v v v
I v v v

x x x

  
   

  
, (23) 

 
11 22 11 22

11 33 11 33

2 ( ),

2 ( ),

      

      
 (24) 

 2ij ij   , , 1,2,3i j  , i j , (25) 

 

11 22 33 0,

2
,  , 1, 2,3.i

ii

ij

v
i j

S

     


  

 (26) 

Здесь 2 1 ;ij ij ij     ( , 1,2,3; 1,2)t

ij i j t    — напряжение на по-

верхности «t» элемента (m); 
2 1;i i iv v v    ( 1,2,3; 1,2)t

iv i t   — ско-

рость перемещения на поверхности «t» элемента (m) в направлении ;ix  

 
1 20,5( )ij ij ij    ; 1 20,5( )i i iv v v  ; 

1 2

ij ij ijS S S  ; 

1X

2
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1
1S 
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1
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2
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1
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V  — объем элемента, 12 13 21 ;
8

S S S
V

 
  ( )i

k

k

v

x




 — изменение скорости 

iv  по координате 
kx ; *

iv  — средние по элементу скорости ,  1,2,3.iv i   

Повторение некоторых записей в сформулированной системе сде-

ланы, чтобы удобства использования формул. 

Система (17, 22-26) имеет довольно большое число  неизвестных 

значений ,  ( , 1,2,3)ij iv i j  по граням элементов, на которые разбита 

область. 

Данную систему можно значительно сократить. Перейдем к экви-

валентной системе алгебраических уравнений. 

В уравнениях (15) имеется нелинейные член 
iI . Если принять *

iv  

— заданными («замороженными» на n-ой итерации), то система урав-

нений (17, 22-26) будет линейной. 

Разобьем все неизвестные на два множества: зависимые и незави-

симые. Определим последовательность вычислений для зависимых 

неизвестных. Перейдем к системе линейных алгебраических уравне-

ний относительно независимых неизвестных. 

Пусть 
0ii aГ 

, *

*   ( 1, 2,3)
i i

i a a
Г i


  — поверхности, ограничивающие 

рассматриваемую область; 
ivГ , 

*

ivГ  — поверхности, где заданы скоро-

сти перемещений 
iv , 

iГ 
, 

*

iГ   — поверхности, где заданы напряжения 

ii . При этом 

 
i iv iГ Г Г   ; * * *

i iv iГ Г Г   . 

Выразим из уравнения (26) 
2

1v : 

 2 1 2 1 2 121 21
1 1 2 2 3 3

32 13

( ) ( )
S S

v v v v v v
S S

     , (27) 

Если принять неизвестные 
2

tv , 
3( 1,2)tv t   независимыми, то полу-

чаем, что (24) является рекуррентным соотношением, определяющим 

1v  по всем элементам исследуемой области от 
1 0a   до 

*

1 1a a .  

На поверхностях *

ivГ  реализуются новые уравнения: 

 *
1

2 *

1 1 1( ) ( ) 0
v

f f f

Г
F v v   , 

11...,f f , (28) 

где 
*

1( ) fv  скорость перемещения 
1v , заданные граничными условиями 

по поверхности 
*

ivГ , а 
1f  — число элементов, примыкающих к поверх-

ности *

*

iv
Г . 



В.И. Одиноков, А.И. Евстигнеев, Э.А. Дмитриев, В.А. Карпенко 

30 

Первую группу независимых переменных, число которых в точно-

сти соответствует числу уравнений (28),образуют 
1

11
vГ . 

Рассмотрим уравнение (15), выразим из них ,  1,2,3,ii i   с учетом, 

что ;ij ikS S  , , 1,2,3i j k  , i j k  . 

 

*
1 2

11

4 ( )
;

, , 1,2,3;  

jiki i i
ii ik ij

ik ij ij ik

SS V F I

S S S S

i j k i j k


      



  

 (29) 

Данные рекуррентные соотношения будем удовлетворять от 
*

i ia a  до 0ia  , , , 1,2,3i j k  . На поверхностях ,  ( 1,2)iГ i   будут 

иметь место уравнения: 

 *
1

1 *

2 ( ) ( ) 0
v

f f f

ii iiГ
F      , 

21,...,f f , 1,2,3i  . (30) 

где 
*

ii  — нормальные напряжения 
ii , заданные на поверхностях 

iГ 
 

граничными условиями, 
2f  — количество элементов примыкающих к 

поверхностям ( 1,2,3).iГ i   

Тогда вторую группу независимых переменных составят скорости 

,  ( 1,2,3),
ii Гv i


  число которых совпадает с числом уравнений (27). 

Следующую группу уравнений по каждому элементу области со-

ставляют уравнения (21): 

 
3 11 22 11 22 3

4 11 33 11 22 4

( ) ( ) 2 (( ) ( ) 0,  2,..., ;

( ) ( ) 2 (( ) ( ) 0, 2,..., ;

f f f f f

f f f f f

F f f

F f f

          

          
 (31) 

где 
3 4,  f f  — количество граней, перпендикулярных соответственно 

координатам 
2 3,  x x . 

Последней группой независимых переменных будут скорости пе-

ремещений 
2 3,v v  по внутренним граням элементов, а также *

2
2 ,

Г
v



 

*
2

22 ,
vГ

  *
3

3 ,
vГ

v  *
3

33 ,
vГ

  суммарное количество которых равно числу 

уравнений (28). 

Таким образом, получаем следующее множество независимых пе-

ременных: 

* * * *
21 2 3 3

11 2 3 2 22 3 33{[ ]},[ , 1,2],[ , ],[ ],[ ],[ ],[ ]},
iv v v

i Г ГГ Г Г Г
X v i v v v v

  

     (32) 

где 
ivГ , 

*

ivГ  — поверхности, где заданы скорости перемещений 
iv ; 

iГ 
, 

*

iГ   — 

поверхности, где заданы напряжения 
ii ; 

1 2,f f  — число элементов, 
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примыкающих к поверхности 
*

ivГ , 
1 ( 1,2,3);Г i 

3 4,f f  — количество 

граней перпендикулярных соответственно координатам   2 3,  x x . 

Таким образом, система преобразуется в эквивалентную систему 

алгебраических линейных уравнений со значительно меньшим коли-

чеством неизвестных. 

Определим порядок для вычисления зависимых переменных: 

1. Удовлетворяет рекуррентному соотношению (27). 

2. Вычисляем во внутренних узлах по формулам (19) значения 
o

ij   

и по формулам (20, 21) значения ;  , 1, 2,3;  ,  1, 2.t

ij i j i j t      

3. Вычисляем 
t

ij  по внешним граням, примыкающим к поверхно-

сти в соответствие с граничными условиями (10). 
4. Удовлетворяем рекуррентным соотношениям (29). 

Таким образом, система, получаемая непосредственно аппрокси-

мацией исходной системы дифференциальных уравнений в частных 

производных конечными разностями, преобразуется в эквивалентную 

систему алгебраических линейных уравнений (28, 30, 31), число урав-

нений в которой примерно на порядок меньше, чем в исходной. Кроме 

того, значительно увеличивается обусловленность системы. 

Коэффициенты и свободные члены новой эквивалентной системы 

уравнений (28, 29, 31) можно найти с помощью следующей проце-

дуры: 

Пусть эквивалентная система уравнений имеет вид: 

 0t ij i iF a x b   , , 1,...,i j n . (33) 

Если положить все неизвестные равными нулю 0,  1,..., ,ix i n   то, 

пробегая выше приведенную последовательность 1,…,4 и насчитывая,

tF  найдем свободные члены новой системы (33): 

0 , 1,..., .t iF b i n   

Далее находим коэффициенты ija  в (33). Для этого положим 

1,  0,  ( ,  1,..., ).k ix x i k i n     Опять, пробегая выше указанную по-

следовательность, находим 
k

tF  и 
ika  по формуле: 

 
0

1

k

t t
ik

F F
a


 , 1,...,i n . 

Таким образом, определяется вся матрица 
ika  новой эквивалентной 

системы. 
Как было сказано выше, система (17, 22-26) становиться линейной 

при заданном значении 
*,  1,2,3iv i   в (22). Численные расчеты пока-

зали, что в алгоритме решения задачи уточнение 
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 * *

1( ) ( )n i nv v   (34) 

по каждому элементу не всегда срабатывает — итерационный процесс 

может расходиться.  

В данной работе уточнение  𝑣𝑖
∗ осуществлялось по формуле 

 * * *

1 1( ) ( ) [( ) ( ) ]i n i n i n i nv v k v v    , (35) 

здесь 
*

1( )i nv   — величина 
*( )iv  на предыдущей итерации, 

*( )i nv  — вели-

чина 
iv  на n-ой итерации, k — коэффициент сглаживания уточнений 

*( 1).iv k   При 1k   имеем (31). 

Решение уравнения теплопроводности (10) осуществляется после 

найденных значений ( 1,2,3)iv i   по каждому элементу.  

Для численного решения используем численный метод, описан-

ный в работе [23], а также работу [14], в которой для стационарного 

случая с учетом массопереноса уравнение теплопроводности имеет 

вид: 

 
3 3 3 3

2 1

1 1 1 1

( ) ( ) ( ) ( ).i i k i k i i k i i i k

i i i i

t t t a   

   

               (36) 

 

2 1 * *

1 1 1 1
12 11 1 1

21 21 21 21 21 21 21 21

2 1 * *

2 2 2 2
22 21 2 2

12 12 12 12 12 12 12 12

2 1 *

3 3 3
32 31 3 3

23 23 23 23 23 23

2 3 2 2
;  ;  ;  ;

2 2 2 2
;  ;  ;  ;

2 2 2
;  ;  ;  

F A F A v v
t t t a

S S S S S S S S

F A F A v v
t t t a

S S S S S S S S

F A F A v
t t t a

S S S S S S

   

   

  

   
   

   
   

   
  

*

3

23 23

12 13 21

2
;

;  ;  ;  , , 1, 2,3;

.
16

j j j

i ik ip

k

k

v

S S

A F S S i k p i k p
c V

S S S
V




     



 


 (37) 

Здесь 
k  — среднее значение температуры в k-ом элементе; ,i i

    

— среднее значение температуры в элементе, следующим за элемен-

том k соответственно в отрицательную и положительную сторону по 

координате 
ix ; 

 
1 2

ij ij ijS S S    ; 
1 2

ij ij ijS S S     
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— значения дуг ijS  по элементам, граничащим с элементом «k» с со-

ответствующей стороны; 
x

iv  — средние по элементу проекции скоро-

сти перемещений по координатным осям  ( 1,2,3)ix i  . 

Алгоритм решения задачи.  

1. Исследуемая область течения разбивается на элементы ортого-

нальной формы. Рассчитывается матрица дуг элементов. 

2. Задаются граничные условия; принимаются 
* 0,  1,2,3iv i  . 

3. Насчитывается матрица коэффициентов и свободных членов но-

вой эквивалентной системы в соответствие с вышеизложенной после-

довательностью вычислений. 

4. Решается система линейных уравнений по стандартной про-

грамме, в результате решения получаем значения независимых пере-

менных. 

5. По каждому элементу и его граням насчитывается ,  ,  ii i ijv   (за-

висимые переменные). 

6. Уточняются по каждому элементу значения 
*

iv  по формуле (32). 

7. Производится сравнение *( )i nv  и *

1( )i nv 
 и следует операция 3. 

Итерационный процесс повторяется до достижения заданной точно-

сти. 

8. Решение уравнения теплопроводности (33) при граничных усло-

виях (10). 

Тепловые потоки iq
 (10) по стенкам кристаллизатора определяем 

аппроксимацией экспериментальных данных, приведенных в работе 

[6]. 

 * 0,82,5( )iq v , MBт/м2, 6,7,9,10i  , 

где v  — скорость омывания стенки кристаллизатора (м/сек). 

При условии, что 

 * ( )i iq
n


 


, 

получаем 

 *( ) ( )k

n i n i iq 
   


, 6,7,9,10i  , 

где 
n

  — температура элемента, примыкающего к поверхности (n); 
k

n   

— температура внутреннего элемента, находящегося по нормали сразу 

же за поверхностным  ;   — расстояние от центра тяжести элемента

  до центра тяжести элемента k . 
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Результаты численного математического моделирования. За-

давались существующие размеры кристаллизатора: 

 100 смH  ,  12,5 смB  ,  100 смl  ,  20 смh  ,  7,5 смb  , 

 8,5 смh  ,  1,5 смB  , 
1  1,5 см , 1 м/мин = 1,66…см/сuv  . 

Для стационарного процесса 
*v определялось из равенства секунд-

ных объемов. 

 * *;  u
u n B

n B

v B l
v B l v v

 
      

 
. 

Температура истекания жидкой стали из окна (Г5) принималась  

5

* 1600Г  С. Температуры на поверхностях стакана (рис. 3) 

,  3,8,8 ,11iГ i   принимались по экспериментальным данным 

* 1550
iГ

  C, 3,8,8 ,11i  . На поверхности 
2Г  (рис. 3) находится 

жидкая шлаковая «рубашка», температура которой 
2

* 1550Г   C. 

Константы в формулах (34): 

 29 Bт/(м К)   , 444.47 Дж/(кг К)c   , 37800 кг/м  . 

Коэффициент вязкости   в уравнениях (6) принимался по работе 

[12], 32,1 10    кг/(м с) . Некоторые результаты расчета представ-

лены на рис. 7. 

На рис. 7 представлены результаты расчетов в сечении Б-Б (рис. 

3). Потоки скоростей течения металла в плоскости (
1 2,  x x ) для 10n 

об/мин  (рис. 7, а); 30n   об/мин (рис. 7, б); 50n   об/мин (рис. 7, в). 

Качественно картины потока в этом сечении похожи. Несколько отли-

чается картина потоков при 10n   об/мин (рис. 7, а). Здесь наблюда-

ются, в отличии от 30,  50n   (об/мин) двойной вихрь под погружным 

стаканом. С возрастанием скорости вращения рубашки возрастают 

пропорционально и скорости движения потоков жидкого металла 

(рис. 7), увеличивается биение металла в боковые стенки в верхней ча-

сти кристаллизатора, особенно при 50n   об/мин. Наблюдается даже 

возможный выход жидкого металла в шлаковую зону (поверхность   

2Г ) в стыке с поверхностью 
7Г  (рис. 7, в). Такое явление нежела-

тельно, так как выход металла в шлаковую рубашку вызывает бурле-

ние и заброс шлака в металл, что негативно скажется на качестве по-

лучаемого непрерывного слитка. 
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в) 

Рис 7. Схема обозначения дуг сетки: 

а) поле скоростей потоков течения металла в кристаллизаторе 

в сечении Б-Б при 10n   об/мин; 

б) поле скоростей потоков течения металла в кристаллизаторе 

в сечении Б-Б при 30n   об/мин; 

в) поле скоростей потоков течения металла в кристаллизаторе 

в сечении Б-Б при 50n   об/мин; 

 

Дать анализ температурным потокам довольно затруднительно. По 

всему объему идут потоки жидкого и кристаллизирующегося металла. 

На рис. 7, в крестиками обозначены зоны металла выше температуры 

кристаллизации. Ниже уровня погружного стакана наблюдается пол-

ный хаос. Может это и не плохо с точки зрения зарождения центров 

кристаллизации. 

Выводы. Численно промоделирован процесс подачи жидкого ме-

талла в кристаллизатор прямоугольного сечения при вращающемся 

стакане с вертикальными ребрами.  

Показана возможность расчета вихревых потоков на примере под-

вода жидкого металла в кристаллизатор. Построена математическая 

модель процесса заполнения жидким металлом кристаллизатора, поз-

воляющая определять поле скорости и температур металла в зоне кри-

сталлизатора в зависимости от числа оборотов мешалки. При числе 

оборотов мешалки 50 об/мин и выше наблюдается выброс жидкого ме-

талла в шлаковую ванну. Оптимальным принимается 30n   об/мин. 
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Mathematical modeling of the process of mixing of liquid 

metal in the mold of a continuous steel casting plant 

 V.I. Odinokov, A.I. Evstigneev, E.A. Dmitriev, V.A. Karpenko 

Komsomolsk-na-Amure State University, Khabarovsk Territory, 

Komsomolsk-on-Amur, 105005, Russia 

 

Experimental studies of the flow of liquid metal in the UNRS crystallizer are a long, com-

plex and time-consuming process. Therefore, mathematical modeling by numerical meth-

ods is increasingly used for this purpose. A new technology for pouring liquid metal into 

a crystallizer is proposed. The original patented design of the device, consisting of a di-

rect-flow and rotating gluhodon glasses, is given. The main results of studies of the melt 

flow in the crystallizer volume are presented. The objects of research were the hydrody-

namic and thermal fluxes of liquid metal of a new process of casting steel into a rectangu-

lar section mold of the UNRS, and the result was a spatial mathematical model describing 

the fluxes and temperatures of liquid metal in the mold. To model the processes occurring 

during the flow of metal in the crystallizer, a specially created software package was used. 

The theoretical calculations are based on the fundamental equations of hydrodynamics, 

the equations of mathematical physics (the equation of thermal conductivity taking into 

account mass transfer) and a proven numerical method. The studied area was divided into 

elements of finite dimensions, for each element the resulting system of equations was writ-

ten in a difference form. The result of the solution is the fields of velocities and tempera-

tures of the metal current in the volume of the mold. According to the developed numerical 

schemes and algorithms, a calculation program has been compiled. An example of calcu-

lating the casting of steel into a mold of rectangular cross-section, flow diagrams of liquid 

metal along various sections of the mold is given. Vector flows of liquid metal in different 

sections of the mold at different numbers of revolutions of the jacket with vertical ribs are 

clearly presented. Areas of different turbulence have been identified. The mixing mode at 

n = 30 rpm is considered optimal. At n = 50 rpm, liquid metal is ejected into the slag bath. 
 

Keywords: continuous casting, mold, solid-bottom glass, mixing, mathematical model, al-

gorithm, flow rates 
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