Рубрика: "05.07.00 Авиационная и ракетная техника"



629.735.33.016+621.45.015 Моделирование влияния атмосферных условий на результаты оптимизации программы полета дозвукового пассажирского самолета

Мозжорина Т. Ю. (МГТУ им.Н.Э.Баумана), Губарева Е. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-7488


Исследовано влияние атмосферных условий, характерных для различных климатических зон, на результаты оптимизации программы полета пассажирского дальнемагистрального самолета. Моделирование полета и характеристик силовой установки основано на современных традиционных подходах, используемых в задачах подобного рода. Оптимизация участка полета разгона — набора высоты проводится при минимизации количества топлива, затраченного на этот участок полета. Оптимизация крейсерского участка полета проводится при учете эксплуатационных ограничений гражданской авиации. При моделировании полета используется встроенная модель двухконтурного турбореактивного двигателя, позволяющая рассчитать характеристики силовой установки при любых режимах полета. Полет дозвукового самолета рассмотрен в одной вертикальной плоскости. Расчеты проведены для шести стандартов изменения температуры воздуха по высоте (в зависимости от климатической зоны). Учтена возможность изменения атмосферного давления у поверхности Земли. Оценено влияние атмосферных условий на результаты оптимизации программы полета.


Мозжорина Т. Ю., Губарева Е. А. Моделирование влияния атмосферных условий на результаты оптимизации программы полета дозвукового пассажирского самолета. Математическое моделирование и численные методы, 2014, №3 (3), c. 74-88



51-71:74 Длиннопериодические колебания летательных аппаратов при гиперзвуковых скоростях

Сидняев Н. И. (МГТУ им.Н.Э.Баумана), Глушков П. А. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-1-99114


Дан теоретический анализ длиннопериодических (фугоидных) колебаний летательного аппарата, обладающего подъемной силой и совершающего полет с гиперзвуковой скоростью в произвольной атмосфере. Причиной колебаний является взаимный переход кинетической энергии в потенциальную при полете по траектории, имеющей колебательный характер и определяемой в первую очередь регулируемым продольным моментом, равным нулю при установившемся полете. Показано, что с приближением скорости к первой космической уменьшение силы тяжести с высотой преобладает над уменьшением плотности атмосферы так, что с ростом скорости период фугоидных колебаний асимптотически стремится к соответствующему периоду обращения летательного аппарата. Получены аналитические выражения для короткопериодических колебаний, или колебаний по углу атаки. Показано, что эти выражения и выражения для длиннопериодических колебаний хорошо согласуются с результатами численного решения.


Сидняев Н. И., Глушков П. А. Длиннопериодические колебания летательных аппаратов при гиперзвуковых скоростях. Математическое моделирование и численные методы, 2014, №1 (1), c. 99-114



629.762 Учет эффекта вторичного догорания при расчетах систем газодинамического выброса летательного аппарата

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-5573


Рассмотрен основанный на термохимических расчетах способ учета эффекта вторичного догорания продуктов сгорания твердотопливного энергоустройства в рабочем объеме системы газодинамического выброса летательного аппарата (ЛА). Предложенный способ легко использовать в инженерных расчетах систем газодинамического выброса, а также для анализа результатов испытаний, в которых имеет место эффект вторичного догорания.


Плюснин А. В. Учет эффекта вторичного догорания при расчетах систем газодинамического выброса летательного аппарата. Математическое моделирование и численные методы, 2014, №3 (3), c. 55-73



521.2:521.3:521.61 Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите

Базей А. А. (НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Базей Н. В. (НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Боровин Г. К. (Институт прикладной математики им. М.В. Келдыша РАН), Золотов В. Е. (Институт прикладной математики им. М.В. Келдыша РАН), Кашуба В. И. (НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Кашуба С. Г. (НИИ «Астрономическая обсерватория» Одесского национального университета им. И.И. Мечникова), Куприянов В. В. (ГАО РАН), Молотов И. Е. (Институт прикладной математики им. М.В. Келдыша РАН)


doi: 10.18698/2309-3684-2015-1-8393


Выполнена обработка наблюдений искусственного небесного тела 43096, полученных в 2006 ̶ 2012 годах в рамках проекта «Научная сеть оптических инструментов для астрометрических и фотометрических наблюдений» — НСОИ АФН (ISON). Определены кеплеровы элементы орбиты, вектор состояния на 24.11.2006 г. 1 ч 55 мин 50,76 с UTC. Выполнено численное интегрирование уравнений движения с учетом возмущений со стороны полярного сжатия Земли, Луны, Солнца и давления солнечного излучения.
Основываясь на численной модели движения в околоземном пространстве, учитывающей только наибольшие возмущения, предложен способ сведения искусственных небесных тел с высоких орбит.
Впервые по объектам с большим отношением площади поверхности к массе получено столь значительное число данных на длительных интервалах времени, которое позволило выявить их особенности.


Базей А. А., Базей Н. В., Боровин Г. К., Золотов В. Е., Кашуба В. И., Кашуба С. Г., Куприянов В. В., Молотов И. Е. Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите. Математическое моделирование и численные методы, 2015, №1 (5), c. 83-93



629.762 Математическое моделирование процесса втекания воды в кольцевое пространство контейнера при подводном газодинамическом выбросе летательного аппарата

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-2-3964


Рассмотрена одномерная схема расчета нагрузок на корпус летательного аппарата от втекания воды в кольцевое пространство пускового контейнера при подводном газодинамическом выбросе. Внешняя гидродинамическая задача решается с использованием теории потенциала. Деформации стенок летательного аппарата и пускового контейнера учитываются на основе решения статической задачи Ламе.


Плюснин А.В. Математическое моделирование процесса втекания воды в коль- цевое прстранство контейнера при подводном газодинамическом выбросе лета- тельного аппарата. Математическое моделирование и численные методы, 2017, No 2, с. 39–64.



533.6.011.31.5:532.582.33 Аналитические формулы повышенной точности для расчета распределения давления на поверхности выпуклых затупленных тел вращения произвольного очертания

Котенев В. П. (МГТУ им.Н.Э.Баумана), Сысенко В. А.


doi: 10.18698/2309-3684-2014-1-6881


Разработаны аналитические формулы для быстрого и точного расчета давления на участке поверхности тел вращения произвольного очертания, обтекаемых сверхзвуковым потоком газа. Рассмотрены примеры применения метода для пространственных течений газа.


Котенев В. П., Сысенко В. А. Аналитические формулы повышенной точности для расчета распределения давления на поверхности выпуклых затупленных тел вращения произвольного очертания. Математическое моделирование и численные методы, 2014, №1 (1), c. 68-81



629.762 Моделирование массорасходных характеристик энергоустройств, обеспечивающих газодинамический выброс летательного аппарата с заданными параметрами

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2017-1-5577


Предложена и обоснована математическая теория для определения массорасходных характеристик энергоустройств, проектируемых для осуществления газодинамического выброса летательного аппарата из пускового контейнера с заданными ограничениями на параметры. Представлена наглядная геометрическая интерпретация предлагаемого метода. Расчеты параметров газодинамического выброса и внутрибаллистический расчет функционирования энергоустройства с твердотопливным зарядом подтверждают правильность теоретических построений и их реализуемость на практике.


Плюснин А. В. Моделирование массорасходных характеристик энергоустройств, обеспечивающих газодинамический выброс летательного аппарата с заданными параметрами. Математическое моделирование и численные методы, 2017, №1 (13), c. 55-77



629.762 Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию

Плюснин А. В. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2016-2-3954


Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.


Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию. Математическое моделирование и численные методы, 2016, №2 (10), c. 39-54



539.3 Численное моделирование сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов

Димитриенко Ю. И. (МГТУ им.Н.Э.Баумана), Коряков М. Н. (МГТУ им.Н.Э.Баумана), Захаров А. А. (МГТУ им.Н.Э.Баумана), Строганов А. С. (МГТУ им.Н.Э.Баумана)


doi: 10.18698/2309-3684-2014-3-324


Предложен алгоритм численного моделирования сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов, который позволяет рассчитывать все параметры трехмерного аэрогазодинамического потока в окрестности поверхности аппарата, теплообмен на поверхности, процессы внутреннего тепломассопереноса в конструкции из термодеструктирующего полимерного композитного материала, а также процессы изменения термодеформирования композитной конструкции, включающие в себя эффекты изменения упругих характеристик композита, переменную тепловую деформацию, усадку, вызванную термодеструкцией, образование внутрипорового давления газов в композите. Приведен пример численного моделирования сопряженных процессов в модельной композитной конструкции высокоскоростного летательного аппарата, иллюстрирующий возможности предложенного алгоритма.


Димитриенко Ю. И., Коряков М. Н., Захаров А. А., Строганов А. С. Численное моделирование сопряженных аэрогазодинамических и термомеханических процессов в композитных конструкциях высокоскоростных летательных аппаратов. Математическое моделирование и численные методы, 2014, №3 (3), c. 3-24



1>>