Рубрика: "05.07.00 Авиационная и ракетная техника"
doi: 10.18698/2309-3684-2017-1-5577
Предложена и обоснована математическая теория для определения массорасходных характеристик энергоустройств, проектируемых для осуществления газодинамического выброса летательного аппарата из пускового контейнера с заданными ограничениями на параметры. Представлена наглядная геометрическая интерпретация предлагаемого метода. Расчеты параметров газодинамического выброса и внутрибаллистический расчет функционирования энергоустройства с твердотопливным зарядом подтверждают правильность теоретических построений и их реализуемость на практике.
Плюснин А. В. Моделирование массорасходных характеристик энергоустройств, обеспечивающих газодинамический выброс летательного аппарата с заданными параметрами. Математическое моделирование и численные методы, 2017, №1 (13), c. 55-77
doi: 10.18698/2309-3684-2015-3-5867
Рассмотрена задача определения давления на поверхности тел, обтекаемых потоком газа с малой сверхзвуковой скоростью (M< 1,5). Разработан экономичный алгоритм для расчета давления на участке поверхности затупленных тел вращения. Приведены примеры расчетов обтекания сферы и эллипсоидов с разными отношениями полуосей. Сравнение с точными численными расчетами показывает эффективность предложенного подхода.
Котенев В. П., Сысенко В. А. Расчет давления при обтекании затупленных тел с малыми сверхзвуковыми скоростями. Математическое моделирование и численные методы, 2015, №3 (7), c. 58-67
doi: 10.18698/2309-3684-2015-1-8393
Выполнена обработка наблюдений искусственного небесного тела 43096, полученных в 2006 ̶ 2012 годах в рамках проекта «Научная сеть оптических инструментов для астрометрических и фотометрических наблюдений» — НСОИ АФН (ISON). Определены кеплеровы элементы орбиты, вектор состояния на 24.11.2006 г. 1 ч 55 мин 50,76 с UTC. Выполнено численное интегрирование уравнений движения с учетом возмущений со стороны полярного сжатия Земли, Луны, Солнца и давления солнечного излучения.
Основываясь на численной модели движения в околоземном пространстве, учитывающей только наибольшие возмущения, предложен способ сведения искусственных небесных тел с высоких орбит.
Впервые по объектам с большим отношением площади поверхности к массе получено столь значительное число данных на длительных интервалах времени, которое позволило выявить их особенности.
Базей А. А., Базей Н. В., Боровин Г. К., Золотов В. Е., Кашуба В. И., Кашуба С. Г., Куприянов В. В., Молотов И. Е. Эволюция орбиты пассивного фрагмента с большой площадью поверхности на высокой околоземной орбите. Математическое моделирование и численные методы, 2015, №1 (5), c. 83-93
51-71:74 Длиннопериодические колебания летательных аппаратов при гиперзвуковых скоростях
doi: 10.18698/2309-3684-2014-1-99114
Дан теоретический анализ длиннопериодических (фугоидных) колебаний летательного аппарата, обладающего подъемной силой и совершающего полет с гиперзвуковой скоростью в произвольной атмосфере. Причиной колебаний является взаимный переход кинетической энергии в потенциальную при полете по траектории, имеющей колебательный характер и определяемой в первую очередь регулируемым продольным моментом, равным нулю при установившемся полете. Показано, что с приближением скорости к первой космической уменьшение силы тяжести с высотой преобладает над уменьшением плотности атмосферы так, что с ростом скорости период фугоидных колебаний асимптотически стремится к соответствующему периоду обращения летательного аппарата. Получены аналитические выражения для короткопериодических колебаний, или колебаний по углу атаки. Показано, что эти выражения и выражения для длиннопериодических колебаний хорошо согласуются с результатами численного решения.
Сидняев Н. И., Глушков П. А. Длиннопериодические колебания летательных аппаратов при гиперзвуковых скоростях. Математическое моделирование и численные методы, 2014, №1 (1), c. 99-114
doi: 10.18698/2309-3684-2016-2-3954
Рассмотрены способы восстановления параметров движения летательного аппарата в контейнере по данным их регистрации с большой дискретностью в процессе экспериментальной отработки газодинамического выброса.
Плюснин А. В. Восстановление параметров движения летательного аппарата по данным их дискретной регистрации. Ч. 2. Способы, использующие регуляризацию. Математическое моделирование и численные методы, 2016, №2 (10), c. 39-54
629.78 Математическое моделирование процесса раскрытия солнечной батареи большой площади
doi: 10.18698/2309-3684-2014-2-101114
Построена математическая модель процесса раскрытия многозвенной конструкции солнечной батареи с тросовой системой раскрытия. На основе анализа кинематической схемы системы раскрытия выбраны размеры радиусов роликов и передаточного отношения двух типов шестеренчатых механизмов, обеспечивающих заданную последовательность фиксации звеньев. Для исследования процесса раскрытия солнечной батареи использовано уравнение Лагранжа второго рода. Отличительной особенностью предлагаемого подхода является итерационный способ учета деформации тросов системы синхронизации. Разработанная математическая модель может быть использована для выбора оптимальных конструктивных параметров и характеристик системы раскрытия, а также для анализа нештатных ситуаций и оценки надежности процесса раскрытия.
Бушуев А. Ю., Фарафонов Б. А. Математическое моделирование процесса раскрытия солнечной батареи большой площади. Математическое моделирование и численные методы, 2014, №2 (2), c. 101-114
doi: 10.18698/2309-3684-2015-1-1730
Предложен метод создания геометрической формы летательного аппарата (ЛА) для расчета параметров обтекания аэрогазодинамическим потоком, а также метод создания расчетной сетки для решения уравнений Навье — Стокса в тонком слое в окрестности ЛА. Представлены результаты численного моделирования обтекания ЛА аэрогазодинамическим потоком с использованием многопроцессорной вычислительной системы.
Братчев А. В., Дубровина А. Ю., Котенев В. П., Максимов Ф. А., Шевелев Ю. Д. Решение задач аэродинамического проектирования с применением многопроцессорной вычислительной машины. Математическое моделирование и численные методы, 2015, №1 (5), c. 17-30
doi: 10.18698/2309-3684-2014-4-8894
Приведены результаты оценки точности для инженерной методики расчета массового расхода газа через ламинарный пограничный слой на полусфере из работы [1]. Предложена аналогичная инженерная методика повышенной точности.
Горский В. В., Сысенко В. А. Моделирование расхода газа через ламинарный пограничный слой на поверхности полусферы в сверхзвуковом воздушном потоке. Математическое моделирование и численные методы, 2014, №4 (4), c. 88-94
doi: 10.18698/2309-3684-2016-1-1737
Рассмотрена задача математического моделирования испытаний по обкатке массивной шины на стенде с беговым барабаном, в ходе которых определены характеристики сопротивления качению шины. Подробно изложены основные этапы построения модели. Приведена формулировка контактной задачи свободного стационарного качения шины по испытательному барабану с учетом рассеяния энергии в резине при циклическом деформировании. Вязкоупругое поведение резины описано с помощью модели Бергстрема — Бойс, числовые параметры которой установлены по результатам испытаний образцов. Условия контакта в нормальном и тангенциальном направлениях сформулированы с использованием функций внедрения, для выполнения контактных ограничений применен метод штрафа. Численное решение трехмерной задачи вязкоупругости получено методом конечных элементов. Для оценки адекватности построенной модели проведено сравнение результатов расчетов с данными испытаний массивной шины на стенде Hasbach по значениям полученных сил сопротивления качению при различных
нагрузках на шину. Сопоставлены распределения давления в площади контакта, полученные расчетным путем и экспериментально с применением оборудования фирмы XSENSOR Technology Corporation.
Белкин А. Е., Семенов В. К. Моделирование стационарного качения массивной шины по беговому барабану с учетом диссипации энергии в резине. Математическое моделирование и численные методы, 2016, №1 (9), c. 17-37